
Achieving Business Process Agility in Engineering Change 

Management with Agent Technology 
Giovanni Rimassa 

Whitestein Technologies AG 

Pestalozzistrasse, 24 

8032 Zürich, Switzerland 

gri@whitestein.com

Birgit Burmeister 
DaimlerChrysler AG, Group Research 

Hans-Klemm-Straße 45 

71034 Böblingen, Germany 

birgit.burmeister@daimlerchrysler.com

Abstract – The importance of business processes for a 

successful enterprise cannot be overestimated. They are 

core assets through which a business turns its potential 

into actual competitiveness on the market. To face the 

challenges posed by today’s changing and uncertain 

business environment, traditional BPM approaches are 

not sufficient anymore. This paper presents an approach 

to business process management, which leverages Agent 

Technology features to obtain agile business process 

behavior. Beyond the problem and solution description, 

this work presents a concrete case study in the domain of 

Engineering Change Management. 

Keywords: agents, business process management, 

engineering change management. 

1 Introduction 

Business processes are a fundamental component of any 

enterprise across all kinds of industries. Their effective 

setup, execution and evolution are of paramount 

importance to successful business operations. By definition 

business processes consist of a set of activities, connected 

in a structured whole. They describe the modes of 

operation of a business organization in given situations and 

their importance is manifold: 

They constitute the organizational knowledge of the 

enterprise. The ways of operating that are captured by 

business processes belong to the organization, and they are 

made public and explicit in the face of personnel turnover 

and growth. 

They gather and structure the identity of the enterprise,

express its specific way to conduct business and are often 

the key to realizing an organization’s competitive 

advantage. Moreover, they explicitly represent current 

organizational setup and are amenable to assessment and 

continuous improvement.

The whole set of activities that an organization performs in 

order to create, maintain, control and evolve its business 

processes is named Business Process Management (BPM

for short). BPM is an approach to administering business 

processes that involves people, organizations and 

technologies. In addition, BPM can be carried out with 

varying levels of automation. 

The trend toward more flexible ways of working, shorter 

organizational reaction times and fully embracing market 

and business unpredictability, along with the increase in 

distribution and the need to preserve understandability 

despite more and more complexity, characterizes the past 

years and shows no signs of abating. 

We believe that in the face of the challenges present in 

today’s dynamic business environments, BPM falls short 

of what it is commonly intended to achieve. This paper 

presents agile business process management as an 

effective approach to the challenges mentioned above. 

Moreover, the role and contribution of Agent Technology 

is analyzed, and the application to a concrete case is 

presented. 

This paper is organized as follows. Section 2 presents the 

problem of achieving agility in BPM, with particular 

reference to the domain of Engineering Change 

Management (ECM for short). Section 3 presents the role 

played by Agent Technology in conceiving and realizing a 

solution for the problem of agile BPM. Sections 4 and 5 

illustrate the major concept of the solution, namely goal-

oriented and autonomic BPM. Lastly, Section 6 introduces 

the concrete application of the approach. 

2 Problem Definition 

Today any development project in the automotive industry 

has to be supported by a powerful engineering change 

management. The increasing complexity of the product, 

the shortening of time-to-market and the growing 

dependencies on the suppliers increase the number and the 

complexity of change requests in all phases of the product 

development. Therefore an efficient management of 

product changes is an important success factor.  

Compared to typical business processes, e.g. in call centers 

or financial services, managing engineering processes is 

even more challenging: Engineering processes are long 

running tasks. Constructing a car lasts for many years. 

During this time period many things change – what has 

been an up-to-date approach in the beginning may be 

outdated at the end. Also, engineering processes have to 

cope with uncertainty because of their mixture of creative 

tasks, collaborative work and repeating activities. This 

results in very complex processes with many alternative 

paths and sections that cannot be planned in advance.  

Traditionally, BPM systems have been developed based on 

a mind model of business processes as process chains or 

task chains. Changes, uncertainty, and hidden processes 

are seen (and sometimes handled) as exceptions instead as 



regular events. Hence, support for the special demand of 

engineering processes is limited [2]. Adequate support for 

engineering processes in terms of modeling and execution 

obviously requires a completely new approach for process 

management that is able to deal with the requirements for 

flexibility, transparency, and efficiency, both in design and 

execution of the process.  

2.1 Achieving Business Agility 

A new modelling approach to enable agile processes has to  

• Support the design of huge, complex processes, by 

using a modular process model but also allowing for 

an overall picture of the process. 

• Decrease the effort for changing and maintaining the 

process model. 

• Allow flexibility and agility not only in process 

modelling but also in process execution through 

software systems. 

We think that agent technology can offer approaches 

and methods to meet these requirements. Agent-oriented 

software technology was first introduced to deal with 

large-scale, distributed software systems, which are 

embedded in dynamic environments, and allow for the 

interaction of different partners. The term “agent” is used 

as a name for an autonomous software component, which 

is able to deal with the dynamic environment and may 

interact with other agents [3].  

Inspired by agent technology and especially by the 

concepts of goal orientation and decomposition the 

research department of Daimler has developed the idea of 

a goal- and context-oriented business process modelling. 

The main ideas of this approach are (i) to have a modular 

process model that describes the single steps of a process 

(sub-processes, activities) separate from the goals of the 

process and the different contexts in which the process can 

be executed; (ii) to have different modelling levels, for the 

different parts of the process model; and (iii) to have a 

seamless “translation” of the process model into process 

execution. This modular, goal- and context-based process 

model can then be directly executed as an agile process, 

by considering current goal and context when determining 

the next step in the process, just as realized in the BDI 

agent architecture (see section 3).  For details see [4]. 

2.2 The ACM project 

The feasibility of the sketched goal- and context-oriented 

modelling approach was first shown in a software 

demonstrator implemented by Daimler Group Research 

and applied to the area of engineering change 

management. This demonstrator used the JadeX agent tool 

as the process execution engine. JadeX is implemented by 

the University of Hamburg enhancing the Jade platform 

with a BDI agent architecture [5], see also next section. 

After a successful feasibility study, which was conducted 

in 2005 a suitable commercial software tool had to be 

found to implement a system for “agile change 

management” (ACM) with the goal- and context-oriented 

approach. 

The Whitestein LS/TS platform for multi-agent systems 

was chosen as a candidate base infrastructure, and the 

domain expertise and innovation-fueled vision of Daimler 

met with Whitestein agent technology leading offer to 

make this match into a joint effort. Therefore in the ACM 

project Whitestein and Daimler are collaborating aiming at 

the deployment of a novel, agile BPM system in the 

domain of ECM.  

3 The Role of Agent Technology 

As stated earlier agent technology is a specific approach to 

software engineering. A system is composed of a number 

of agents being autonomous in their behavior and 

interacting with each other to achieve the desired overall 

functionality. A specific architecture of an agent is the so-

called BDI-agent. A BDI- agent is described by its Beliefs, 

i.e. the information an agent has about itself, its 

environment and possibly other agents; its Desires, i.e. 

motivations of the agents that drive its course of action; 

and finally its Intentions; i.e. the short-term goals that the 

agent wants to achieve, derived from its desires and 

external events, to which the agents wants to react. 

Additionally an agent has certain plans how the 

intentions/goals can be achieved. A plan consists of certain 

actions/steps that have to be executed to achieve the 

corresponding goal.  

The BDI architecture was first implemented by [6]. The 

execution of the formal framework sketched above is as 

follows: The activities of an agent can be described as a 

permanent jump between two different types of actions: on 

the one hand the execution of basic tasks, which the agent 

uses to fulfill currently active goals (“execution activity”), 

and on the other hand the reasoning about the next basic 

action, which he will execute (“control activity”). 

Execution activities can be interacting with the 

environment, e.g. with the user of the system, performing 

some kind of computation, manipulating the agent’s own 

data base (belief base), and sending and receiving 

messages to and from other agents.  

A control activity results in the choice of an execution 

activity, which will be performed next. To find out which 

activity to execute next, the agent introspects its goal base, 

the set of possible execution activities and the belief base. 

From the goal base it extracts the goals, which are not yet 

fulfilled. Then it collects all plans, which could be used to 

fulfill these goals. Next, it checks which of the plans could 

be performed, by checking the current context (i.e. the 

current belief base) whether it fits to the context the plan 

was designed for. Different plans are designed for different 

contexts, which is described in the so-called context 

condition of the plan. Thus the agent has to drop all plans 

that would fulfill a goal, but only in another context. 

Among the remaining plans he chooses now the one he 



will execute next (see Figure 3-1). The single steps of the 

plan are then executed as defined in the plan.  

Figure 3-1: Choosing and Executing of Plans 

The BDI architecture is well-established agent architecture 

with several agent tools and applications supporting the 

architecture. Georgeff also used the ideas of the BDI 

architecture for business process modeling and 

management in the Agentis platform [7].  

Based on the ideas of goal-oriented and context-aware 

execution of agent plans, and of using it for business 

process modeling and execution, we have enhanced the 

ideas for a new form of business process modeling.  

4 Goal-oriented BPM 

In day-to-day management operations, it is natural to set 

goals, decompose a goal into sub-goals, define or reuse 

plans, and routinely track and check the execution of 

chosen plans in order to detect problems as they occur (or 

even better before they do), and to take appropriate 

actions. 

On the other hand, today’s dominant IT approaches focus 

almost exclusively on procedures. The concept of what the 

procedure is meant to achieve, and why, typically remains 

implicit in the mind of the humans who designed it. 

Because of this, the increase in process management 

automation that occurred with BPM systems has also 

shifted the focus away from goals and plans and toward 

procedures. 

The limiting consequence is that processes have become 

more efficient in execution but less flexible in adaptation. 

To maintain effectiveness without sacrificing agility, the 

concept of plan and goal must be brought back to center 

stage in BPM solutions. 

4.1 Plans and Goals to Express Processes 

Using a goal-oriented approach separates the statement of 

what the desired system behavior is, from the possible 

ways to perform such behavior. More precisely: 

The desired result is described by achievement conditions

to make true and as maintenance invariants whose 

violation must be avoided. 

The possible ways to obtain a result are represented by 

plans: process graphs decorated with the conditions where 

they are applicable and the results they obtain when 

successful. 

In business organizations there is an upper management 

level, which coarsely drives the more detailed project 

planning and tracking. Such a level gives clear direction 

without unnecessarily limiting the decisional power and 

the adaptation leeway of the finer-grained management 

operations. 

It is thus natural for upper managers to be more concerned 

with (and express their views in terms of) what is to be 

achieved than how to achieve it. Operating at the goal level 

is a natural approach for such people with the core of the 

business process captured through goals and sub-goals 

independently of the actual activities. 

When moving to detailed planning in business or project 

management, there is usually more to the plan than just its 

tasks and structure. At the very least, the expected 

objectives of the plan need be stated, and also, in many 

cases, the initial requirements. Moreover, additional 

information such as resource and time consumption is also 

often attached to a plan. 

To effectively tackle challenges at the organizational level, 

management agility has become a strategy of choice; 

perhaps one of the most decisive weapons in the day-to-

day business world. 

4.2 Keeping the Goal Level Alive 

The procedural nature of computers and software must not 

cripple the management processes just described. In 

particular, a detailed, explicitly directive process 

specification that identifies precisely what to do in each 

and every envisaged variation, e.g., a BPEL execution 

engine, allows agility only up to a certain level. 

In fact the more complex and unpredictable the situation, 

the more convoluted an automated directive process may 

become. This most often results in brittle behavior 

specifications that become progressively harder to extend, 

change and test. 

To move forward and enable a BPM system to support the 

management of complex processes, or execute in a 

dynamic and unpredictable environment, both an explicit 

representation and a clear separation of goal and plan 

levels are essential. 

In principle, the steps to perform goal-oriented business 

process modeling are: 

• Expressing the intentions and requirements of the 

process through goals and sub-goals, connected as 

necessary (“Think the end first!”). 

• Organizing processes into plans by attaching them 

the statement of what they require and what they 

achieve, and grouping them when they achieve the 

same goals in different ways. 

• Decomposing processes into tasks, specifying their 

aggregation structure. 

Once these steps are taken, business processes in an 

enterprise can be modeled as a set of related goals to be 

achieved or maintained. One or many plans are attached to 

these goals, and each plan has its own feasibility 

requirements. Attributes such as expected completion time 

or resource cost can also be associated to plans. 



Adopting goal-oriented BPM results in several benefits, 

such as: 

• Business user empowerment. Users can work at the 

goal level, expressing what is to be achieved as the 

defining core of the business process. The details 

can be left out of this essential picture. 

• Increased process understandability. The goal level 

alone already shows what the business process is 

supposed to achieve (main goal) and which are the 

fundamental milestones (intermediate goals). This 

increased understandability is also leveraged to 

acquire visibility of the whole process even across 

organizational boundaries. 

• Improved process tracking and monitoring. The 

goal level allows tracking of business process 

evolution independently of operational details. If 

needed, the structure at the plan level, together with 

plan attributes such as cost and time, allows the 

continuous fine assessment of the current state of 

the work. 

• Encapsulation of tactics. The set of plans attached 

to a given goal represents a collection of different 

tactics. The details of these tactics do not spark 

dependency chains across involved systems. 

• Lowered maintenance costs. The widespread use of 

declarative specification reduces the dependence on 

details and makes the business process models, and 

their implementation, both more stable and easier to 

change. Moreover, plans can be reused and 

combined to more efficiently deal with process 

goals. 

4.3 The GO-BPMN Language 

The ideas of goal-oriented BPM are supported at the 

modeling and execution level by the Goal-Oriented 

Business Process Modeling Notation (GO-BPMN) for 

modeling processes. GO-BPMN is a visual modeling 

language for the specification of business processes, 

enriching BPMN by the explicit modeling of goals, plans 

and their relationships. Moreover, GO-BPMN precisely 

specifies the operational semantics of all its elements, 

including the used standard BPMN ones, so that compliant 

and unambiguous model execution can be obtained. 

A GO-BPMN model explicitly contains elements such as: 

• Achieve goals. They represent overall or 

intermediate goals that the system will try to bring 

about. These goals become active when some 

context condition is true. Achieve goals are 

arranged into hierarchies with a decomposition 

relation.

• Maintain goals. These goals are used to describe 

safety conditions that have to be verified at all 

times. Whenever one of such conditions is 

negated, a compensation plan is automatically 

scheduled. 

• Plans. They are attached to goals and contain as 

body a BPMN-compliant activity. Moreover, a 

plan has a context condition that tells in which 

situations it can be executed 

The Figure 4-1 shows a small sample of a GO-BPMN 

diagram. 

Figure 4-1 - Goal-oriented modeling with GO-BPMN 

5 Autonomic BPM 

Effectively managing complex business processes in the 

face of a dynamic and unpredictable environment requires 

striking a careful balance between flexibility and safety. 

During operation, the definition and execution of business 

processes has to be easily adapted to unforeseen changes. 

It must also be possible to ensure that these changes are 

correct and do not incur any unfavorable consequences. 

While some human inspection tools can and should be 

provided, it is unreasonable to expect that all safety 

controls can be handled manually. This would simply void 

most of the improvements in timeliness and adaptivity 

gained with an increased level of automation. 

The only way out of this is to provide the system with 

means of self-management. This implies that the system 

itself (i.e., the business process management engine) is 

able to monitor its own operation and, to a certain extent, 

recognize and counteract undesirable situations. Following 

Autonomic Computing terminology, one can mention the 

major facets of autonomic, self-managing systems: 

• Self-healing. The system is able to recover from 

unfavorable conditions that may result in 

malfunctions, by autonomously attempting to 

determine compensation actions and then 

performing them. 

• Self-optimization. The system continuously assesses 

its own performance, explores possible courses of 

actions that would result in performance 

improvements, and adopts the ones that are 

sufficiently promising. 



• Self-protection. The system detects threats and puts 

in place preventive and corrective measures to 

ensure correct operation even in the face of these 

threats. 

• Self-configuration. The system is able to change its 

operating parameters to adapt to mutable external 

conditions, some of which may even be 

unpredictable at system design time. 

5.1 From Autonomic IT to Autonomic BPM 

The original focus of Autonomic Computing was on IT 

infrastructure with the targeted problem being the 

administration and management of complex computing 

environments. Nevertheless, the basic idea and the primary 

concepts of Autonomic Computing apply to most systems 

and even to organizational entities. Introducing self-

management properties into applications can yield 

significant benefits. 

Both for infrastructure and applications, a key to the 

Autonomic Computing vision is the presence of feedback 

control loops in the system. In principle, a system 

exhibiting autonomic self-management can be divided 

into: 

• A base system, providing concrete functionality that 

is required to meet the system design goals. 

• An autonomic controller, monitoring the base 

system and the external environment, and deciding 

and enacting self-management policies. 

When the base system is not simply a software application, 

but a whole business process management system, the 

addition of an autonomic controller results in Autonomic 

Business Process Management.

In autonomic BPM, the “system” is the overall ensemble 

of software, hardware, human and physical resources, 

together with the norms and policies defining it. This 

system is the one that exhibits self-management and in 

particular the self-management qualities. 

The benefits of the autonomic BPM approach result from 

the effect of self-management at various levels, such as 

self-healing of process activities through alternative 

backup tactics, or self-optimization by automatically 

detecting feasible remedies and proposing reasonable 

options to a human for selection. 

In general, the above benefits can be summed up in two 

broad cases: 

• Self-management at the process level. This means 

that the definition and enactment of the business 

process itself have some or all the self-management 

properties. There can be, e.g., special control 

processes that are added to the base processes. The 

way people are involved within the business 

process also has some autonomic traits. 

• Self-management at the engine level. This means 

that the BPM runtime environment has self-

management built into it. The BPM engine exhibits 

self-healing, self-optimization and other similar 

features. 

6 Applying Goal-oriented Autonomic 

BPM 

The two technological traits of goal-oriented and 

autonomic BPM, previously described in Section 4 and 

Section 5, are leveraged by the ACM system in a practical 

way. 

6.1 The ACM System Architecture 

The Figure 6-1 depicts the architecture of the ACM 

system. There the division into Presentation, Logic and 

Data tiers is visible. This approach represents a standard 

solution more and more adopted along the past ten years, 

and found in many installations today. 

Each tier is well separated from the others and the 

presentation tier does not communicate at all with the data 

tier. The logic tier connects the presentation and the data 

tiers, and it is also where the complex application behavior 

is defined. Therefore, a lot of infrastructural issues such as 

communication protocols, security and resource control 

belong to the middle, logic tier. 

Figure 6-1 - Overall architecture of the ACM system 

Instead of taking care of all these complex issues within 

the application, a popular and more effective approach is 

to rely on a support layer (called middleware, broker, or 

application server in different situations) that provides 

them. This is also shown, e.g., by blocks such as J2EE 

Runtime Environment and is another major best practice in 

modern business application development. 

All the above configures a state-of-the-art architecture, but 

it is still not enough to cope with the agility requirement 

and its consequences that sit at the heart of the 

improvement expected from the ACM system. 

While the confinement of business logic to the middle tier 

and the reliance on a middleware are kept, a major step 

forward is taken when choosing the component model for 

the ACM application. 

The chosen component model is a major way that Agent 

Technology contributes to the system concept and features. 



In particular, two kinds of components will execute within 

the ACM system: 

• Agents. Autonomous and situated software 

components, capable of proactive and reactive 

behavior. 

• Services. Non-autonomous software components, 

which are only capable of reactive behavior. 

The interaction between two or more agents is based on 

asynchronous message passing, whereas the interaction 

between an agent and a service relies on the abstraction of 

operation invocation (which can itself be synchronous or 

asynchronous). 

Both the agent-to-agent messaging and the agent-to-service 

invocation adopt a structured data model to express the 

topic of the interaction. Such topics are gathered in one or 

more ontologies, which are then made available at run-time 

providing advanced introspection on all the aspects of 

system behavior and give first-class status to entities such 

as resources, protocols, and organizations. 

Multi-agent systems provide the right set of concepts to 

express and realize the loosely coupled, dynamically 

assembled and highly reflective architecture that can grant 

the desired agility and prompt adaptation to changes. 

Moreover, in order to still achieve a satisfactory quality 

level, with particular respect to the non-functional qualities 

of software, such as modifiability, reliability and 

dependability, the approach of having multiple layered 

execution environments is followed. 

The major point of the approach is to define a series of 

layers of abstraction, from the lower, more basic ones to 

the upper, more abstract ones. Each of these layers has two 

parts: 

• Execution environment, which is fixed and sets 

the boundaries that define the abstraction layer. 

• Execution specification, which can be changed, 

and defines the system behavior within the 

boundaries of the execution environment. 

The execution environment acts as a containment envelope 

for the execution specification, preventing it from affecting 

other layers of the system. 

This layering allows striking a good balance between 

flexibility and safety in modifying the system. Different 

users, with different skills and focuses, can operate at one 

or more of these abstraction levels. Concretely, in the 

ACM system these are: 

• Final business process models described with the 

GO-BPMN graphical executable modeling 

language, for highest abstraction and safety. Both 

business and IT modelers can use the language 

effectively. 

• GO-BPMN reusable modules, containing 

parametric goals and plan sets to be configured 

for application in several process models. 

• High level scripting language to quickly express 

more complex behavior, within a well isolated 

programming environment, providing an easy to 

use API for most of the system functionalities. 

• Java API to implement the core parts such as 

atomic tasks or intermediate service components 

(e.g., for specialized system integration needs) 

6.2 Process Modeling with the ACM System 

As described in [4] first experiences with the goal-

oriented modeling approach where made during modeling 

the ECM process for the research demonstrator. It proved 

useful to concentrate on the “what should the process 

achieve”, i.e. the goals with process analysts. When 

talking to IT-people about “how it should be done”, the 

concrete sub-processes and all the detailed context 

specifications could be modeled. As a result a goal-

hierarchy of the ECM process was built up. The first 

challenge in the ACM project was to translate this goal- 

and context-oriented model of the ECM process into the 

Whitestein platform. Since the common underlying agent 

technology, with the BDI agent execution engine included 

in the LS/TS middleware, this was rather straightforward 

to achieve. The Whitestein platform and idea of goal-

oriented BPM turned out to be the “perfect match” for the 

idea of goal- and context-oriented BPM. The model could 

easily be built up with the modeler. Moreover, the 

seamless transfer from modeling into process execution 

was demonstrated as expected. 

Also the ability to change or enhance the process 

model quickly and easily was used. Today, once a 

business process is modeled and realized as a system, it is 

rather hard to change the model and system. Normally bi-

annual release dates exits for new system releases. This 

may be too long, if the process and system have to change 

quickly, because, e.g., a new accelerated process has to be 

used soon due to business requirements. Due to the 

seamless translation of process model to execution a 

changed process model can be transferred to the execution 

within short time, and any new processes can take the new 

model.  

Beyond the operational goals (i.e. to realize a change 

in a car) several other goals where identified during 

process analysis. These goals are “goals to be monitored 

during execution” like e.g. the time of the process is below 

a certain limit, or cost should not increase a value. An 

agent, according to the ideas of autonomic BPM discussed 

in Section 4, can autonomously monitor these goals.  

7 Conclusion 

Business processes are of paramount importance to the 

successful operation of a modern enterprise. While the 

field of BPM has introduced noteworthy progress in the 

computer support for handling business processes, more 

advanced approaches are necessary in order to meet the 

challenges of business agility. 



The ACM system has to effectively deal with a 

complex and challenging set of requirements, bringing an 

agile but dependable software infrastructure to the Change 

Management process at Daimler. Change Management is a 

critical activity to keep a constant product quality and 

customer satisfaction level while operating in a 

competitive and dynamic market. 

The technological leverage of Agent Technology, 

together with the combined concepts of goal- and context- 

orientation as well as Autonomic Computing, allow the 

conception and realization of an advanced BPM product, 

and of an innovative application in the Engineering 

Change Management domain at Daimler, such as the 

ACM system is going to be. 

References 

[1] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. 

Segal, I. Whalley, J. O. Kephart, S. R. White: “A Multi-

Agent Systems Approach to Autonomic Computing”. 

AAMAS 2004: 464-471 

[2] T. Beuter: Workflow-Management für Produkt-

entwicklungsprozesse. Dissertation Universität Ulm. 

(2002) (in german)  

[3] N.R. Jennings, M.J. Wooldridge (Eds.): Agent 

Technology – Foundations, Applications, and Markets. 

Springer. (1998) 

[4] B.Burmeister, H.-P. Steiert, T. Bauer, H. 

Baumgärtel: „Agile Processes through Goal- and Context-

oriented Business Process Modeling”. in: J. Eder, S. 

Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, 

Sprnger, 215 – 226, 2006. 

[5] L. Braubach, A. Pokahr, W. Lamersdorf: “Jadex: 

A BDI-Agent System Combining Middleware and 

Reasoning”. In: 18. R. Umland, M. Klusch, M. Calisti 

(Eds.): Software Agent-Based Applications, Platforms, 

and Development Kits. Whitestein Series in Software 

Agent Technology. Birkhäuser. (2005)  

[6] A.S. Rao, M.P. Georgeff: “BDI Agents: From 

Theory to Practice.” In V. Lesser (ed.) Proc. 1st 

International Conf. on Multi-Agent Systems. MIT-Press. 

(1995) 

[7] Agentis Software: Adaptive Enterprise™ 

Solution Suite. http://www.agentissoftware.com 


