

Abstract—This paper presents a framework supporting the

definition and implementation of virtual environment
inhabited by interacting situated agents defined according to
the Multilayered Multi-Agent Situated System model. The
framework supports the specification and execution of visually
rich 3D virtual environment endowed by the presence of
mobile agents acting and interacting inside it according to a
multi-agent model. The paper briefly describes the related
works and possible application scenarios for the framework,
then it introduces the multi-agent model underlying the
framework and its basic architecture. Sample applications are
also described so as to show the potential of the framework in
executing models comprising several hundreds of agents
producing an effective visualization of the generated dynamics.

Index Terms— multi-agent systems, virtual environments,
simulation, 3D visualization

I. INTRODUCTION

HE design and realization of virtual environments
inhabited by social entities is a significant application of

the conjoint results of various research areas in computer
science and engineering. Virtual environments have been
exploited in several ways, and in particular:

- to support computer mediated forms of human
interaction, characterized by the introduction of
Embodied Conversational Agents facilitating
users’ interactions [18] or supplying awareness
information in a visually effective form [20];

- to realize operational laboratories for
participatory design, supporting the effective
visualization of various alternative design
choices to the involved stakeholders
[8][13][11];

- to provide effective instruments for the
modeling, simulation and visualization of the
dynamics of entities situated in a representation
of an existing, planned or reconstructed
environment or situation [10][19];

- for sake of entertainment, in movies, computer
games or in online communities (see, e.g.,
Second Life1).

While all these applications are characterized by a strong

aComplex Systems and Artificial Intelligence research center, University

of Milano-Bicocca, via Bicocca degli Arcimboldi 8, 20126 Milano,
{giuseppe.vizzari, giorgio.pizzi}@csai.disco.unimib.it

bDepartment of Computer Science, Institute of Mathematics and
Statistics, Universidade de São Paulo, fcs@ime.usp.br

1 http://secondlife.com

requirement for realistic and effective visualization tools
(and some of them require a thorough analysis of the system
usability, due to the necessary accessibility by non-
technically skilled users), they also call for expressive
models supporting the specification of behaviours for the
entities that inhabit these environments, as well as the
interaction among them and with the environment itself. The
fact that the overall performance of the system is essentially
dependant on the single actions and interactions that are
carried out by entities inhabiting the modeled environment
leads to consider that the Multi-Agent Systems [12]
approach is particularly suited to tackle the modeling issues
that are posed by this scenario. This idea is also
corroborated by the fact that most of the above introduced
references actually describe systems based on this approach,
and by specific experiences in applying MAS approaches to
specific virtual environments applications such as computer
games [16].

In this vein, the main aim of this paper is to show the
current advancement of a long term project that provides the
realization of a framework supporting the development of
MAS based simulations based on the Multilayered Multi-
Agent Situated System model provided with an effective
form of 3D visualization. The main goal of the framework is
to support a smooth transition from the definition of an
MMASS based model of given situation (in terms of
environment, relevant entities and their behaviours,
expressed as individual actions interactions) to the
realization of simulation systems characterized by an
effective 3D user interface. One of the possible application
areas of this kind of system is related to the modeling and
simulation of crowds of pedestrians to support architectural
design or urban planning [3][4]. In order to have
information flowing appropriately from the formal model to
design professionals (e.g. architects and urban planners), the
MMASS-based simulator must be supported by adequate
visualization and animation tools. Such supporting tools are
the core issue of the present paper.

The paper breaks down as follows: the following section
discusses related works in different application scenarios,
while section III briefly introduces the MMASS model and
its application to model pedestrians situated and moving in
representations of physical spaces. Section IV discusses the
architecture of the proposed framework, its main
components and the tools supporting developers adopting it.
Section V presents two sample applications aimed at
showing the potential of the framework in executing models
comprising several hundreds of agents producing an
effective visualization of the generated dynamics.
Conclusions and future developments end the paper.

A Framework for Interacting
Situated Agents in Virtual Environments

Giuseppe Vizzaria, Giorgio Pizzia, Flávio Soares Corrêa da Silvab

T

II. RELATED WORKS AND APPLICATION SCENARIOS

The realization of virtual environments inhabited by
autonomous entities and characterized by a realistic three-
dimensional form of visualization was the goal of several
projects, both commercial and academic, with different
aims, features and available documentation. A complete and
thorough description of the state of the art in this area,
besides being extremely difficult to realize, is out of the
scope of this paper; we will rather briefly report the survey
activity that was carried out before starting the project and
that motivated the effort related to the design and realization
of the framework.

The main aim of the research effort is to realize an
instrument that, on one hand, supports an effective form of
visualization of a virtual environment and, on the other,
allows the specification of the behaviours of the
autonomous entities that inhabit it in terms of an expressive
agent based model. To this purpose, we considered several
possible supporting instruments, both commercial and open
source, both providing a basic enabling technology and also
some projects providing a support to the phases of modeling
and definition of agents behaviours.

Some relevant representatives of the category of
commercial instruments that can support the design and
development of virtual environments are Quadstone
Paramics2 and Massive3. Paramics is a traffic micro-
simulation software, that is able to generate realistic 3D
visualizations of the simulated dynamics. Massive is instead
an application specifically devoted to the generation of
photorealistic animation of crowd-related visual effects (it
was adopted for several films – e.g. to generate the battles
of the Lord of the Ring – and commercials – e.g. to create
the audience in a stadium). These instruments are generally
extremely focused, very powerful, but their internal
mechanisms are not well documented. In general they
cannot be adapted to tackle application scenarios different
from those they were originally conceived for; therefore
they do not provide the degree of flexibility required by our
project.

Some open source efforts were also considered, and two
relevant representatives of the analyzed platforms are
Mason4 [15] and Breve5 [14]. Mason is a discrete-event
multi-agent simulation library, designed to be the
foundation for custom-purpose Java simulations. It also
includes an optional suite of visualization tools in 2D and
3D. However, this suite does not represent a proper support
to the realization of a virtual environment, but rather a
library for realizing simple 3D visualization of the simulated
system. Breve, on the other hand, is a software package
enabling the definition of 3D simulations of multi-agent
systems and artificial life. It adopts a specific ad-hoc
language (called “steve”) for the specification of agents’
behaviours. However, it is more focused on providing an
abstract and extremely simplified 3D environment for
specifying and testing multi-agent models and artificial life
models, rather than supporting the realization of a detailed

2 http://paramics-online.com/
3 http://www.massivesoftware.com/
4 http://cs.gmu.edu/~eclab/projects/mason/

virtual environment.
The analyzed system that was closest to meet our

requirements is Freewalk6, an application that was adopted
in some of the previously cited applications of virtual
environments. It adopts a scenario specification language,
called Q, that supports the specification of the environment
(that must be a VRML model) and the behaviours of agents
(through the notion of scenario). Freewalk, however, is not
an open-source project and the Q language is not very
focused on the interaction among the agents and the
environment (that can be conceived as an element having an
influence on their behaviour that goes beyond the fact that it
provides obstacles to their movement). These considerations
lead us to consider the possibility to adopt a basic enabling
infrastructure for an effective visualization of system
dynamics and an existing model - MMASS [1] - and
platform for the specification of situated MAS supporting
the definition of virtual environments. The MMASS model
is in fact characterized by the fact that agents’ environment
is a first class element of the model, and it deeply influences
agents’ perceptions and actions, supporting forms of
interactions that are particularly suited to represent the
movement of pedestrians in physical spaces [2].

III. MULTILAYERED MULTI -AGENT SITUATED SYSTEM

MODEL

This section will introduce the basic elements of the
MMASS model and its application to represent and manage
mechanisms of interaction between the environment and
active autonomous entities that are useful for the
specification of dynamic virtual environments. We will start
discussing the elements of a single layered model, a Situated
Cellular Agents model, then we will show how it can be
applied to represent physical environments and active
entities situated and moving in it. The last subsection will
discuss how a multilayered structure can be adopted to
enhance the model and support more autonomous forms of
agents’ behaviours.

A. Situated Cellular Agents

A system of Situated Cellular Agents can be denoted by
the three-tuple 〈Space,F,A〉 where Space is a single layered
environment where agents are situated, act autonomously
and interact by means of reaction or through the propagation
of fields belonging to the set F. Field based interaction is an
indirect interaction mechanism that provides a modification
of agents’ environment that can be perceived by agents
according to their context and state; a more thorough
description of field based interaction can be found in [17],
whereas the specific SCA field-based interaction model is
discussed in [6]. Agents belong to A, a finite set of agents,
each characterized by a type determining their state,
perceptive capabilities and behavioural specification. The
elements of this three tuple will now be formally described.

Space - The Space consists of a set P of sites arranged in
a network (i.e. an undirected graph of sites). Each site p∈P
can contain at most one agent and is defined by 〈ap,Fp,Pp〉

5 http://www.spiderland.org/
6 http://www.ai.soc.i.kyoto-u.ac.jp/freewalk/

where ap∈A∪{⊥} is the agent situated in p (ap=⊥ when no
agent is situated in p, in other words p is empty); Fp⊆F is
the set of fields active in p (Fp=∅ when no field is active in
p); and Pp⊂P is the set of sites adjacent to p. Edges
connecting sites represent a constraint to the movement of
agents situated in the environment and also on the diffusion
of fields, which only propagate through these connections.

Fields - A field fτ∈F that can be emitted by agents of
type τ is denoted by the four-tuple
〈Wτ,Diffusionτ,Compareτ,Composeτ〉 where:

• Wτ=S×N, where S⊆Στ, denotes the set of values that
the field can assume; given wτ∈Wτ, wτ=〈sτ,iτ〉, where s∈S
represents information brought by the field (i.e. the field
payload) and iτ∈N represents its intensity.

• Diffusionτ:P×Wτ×P→Wτ is the diffusion function for
field type τ; Diffusionτ(ps,wτ,pd) computes the value of a
field on a given destination site (pd) taking into account in
which site it was emitted (ps) and with which initial value
(wτ∈Wτ).

• Compareτ:Wτ×Wτ→{True,False} is the function that
compares field values. It is used by the perceptive system of
agents to evaluate if the value of a certain field type is such
that it can be perceived.

• Composeτ:(Wτ)
+→Wτ expresses how field values of

the same type have to be combined in order to obtain the
unique value of a field type at a given site.

Agent Types - The possibility to define different agent
types introduces heterogeneity, in other words the chance to
define different abilities and perceptive capabilities.
Defining T the set of types, it is appropriate to partition the
set of agents in disjoint subsets corresponding to different
types. The set of agents can thus be defined as
A=τ∈TAτ where Aτi

∩Aτj
=Ø for i≠j. An agent type τ is

defined by the three tuple 〈Στ,Perceptionτ,Actionτ〉 where:
• Στ defines the set of states that agents of type τ can

assume;
• Perceptionτ:Στ→[N×Wf1]...[N×Wf|F|

] is a function
associating to each agent state the vector of pairs
representing respectively a receptiveness coefficient
modulating the intensity of that kind of field and a
sensitivity threshold represented by a specific field value;
these functions represent the perceptive capabilities
specification for that type of agent and their usage will be
clarified in the description of agents and their behaviours.
Formally, this vector of pairs is defined as

() () ())(),(,...,)(),(,)(),(2211 stscstscstsc FF
ττττττ

where for each i (i=1...|F|), ci
τ(s) and tiτ(s) express

respectively a receptiveness coefficient to be applied to the
field value fi and the agent sensibility threshold to fi in the
given agent state s.

• Actionsτ denotes the set of actions that agents of type τ
can perform, and will be described in the following.

Agents and their Behaviours - An agent a∈A is defined
by the three–tuple 〈s,p,τ〉, where:

• s∈Στ denotes the agent state and can assume one of the
values specified by its type;

• p∈P is the site of the Space where the agent is situated;
• τ is the agent type, which provides the allowed states,

perceptive capabilities and behavioural specification for that
type of agents.

The first two elements were previously introduced, we
will now focus on Actionτ, which is made up of a set of
actions and an action selection strategy. Actions can be
selected from a set of primitives which include reaction
(synchronous interaction among adjacent agents), field
emission (asynchronous interaction among at–a–distance
agents through the field diffusion–perception–action
mechanism), trigger (change of agent state as a consequence
of a perceived event) and transport (agent movement across
the space). The two interaction mechanisms provided by the
SCA model (i.e. reaction and field–based interaction) are
also described by the diagram in Figure 1. Every primitive
will be now briefly described specifying preconditions and
effects. It must be noted that an action selection strategy is
invoked when the preconditions of more than one action are
verified; several possible strategies can be defined, but in
this context a non–deterministic choice among possible
action was adopted.

B

A

A

B

C

Figure 1 – A diagram showing the two interaction
mechanisms provided by the SCA model: two reacting
agents on the left, and a field emission on the right.

The behavior of Situated Cellular Agents is influenced by

agents situated on adjacent positions and, according to their
type and state agents are able to synchronously change their
states. Synchronous interaction (i.e. reaction) is a two–step
process. Reaction among a set of agents takes place through
the execution of a protocol introduced in order to
synchronize the set of autonomous agents. When an agent
wants to react with the set of its adjacent agents since their
types satisfy some required condition, it starts an agreement
process whose output is the subset of its adjacent agents that
have agreed to react. An agent agreement occurs when the
agent is not involved in other actions or reactions and when
its state is such that this specific reaction could take place.
The agreement process is followed by the synchronous
reaction of the set of agents that have agreed to it. Reaction
of an agent a situated in site p∈P can be specified as:

action:reaction(s,ap1,ap2,...,apn,s')
condition:state(s),position(p),agreed(ap1,ap2,...,apn)
effect:state(s')
where state(s) and agreed(ap1,ap2,...,apn) are verified

when the state of agent a is s and agents situated in sites
{ p1,p2,...,pn} ⊆Pp have previously agreed to undertake a
synchronous reaction. The effect of a reaction is the
synchronous change in state of the involved agents; in
particular, agent a changes its state into s'.

Other possible actions are related to the indirect
interaction mechanism, related to field emission and to the
perception–deliberation–action mechanism. Agent emission
can be defined as follows:

action:emit(s,f,p)
condition:state(s),position(p)
effect:added(f,p)
where state(s) and position(p) are verified when the agent

state is s and int position is p. The effect of the emit action is
a change in the active fields related to sites involved in the
diffusion, according to Diffusionf. One of the possible
effects of an agent perception of a certain field fi can be
defined as

action:trigger(s,fi,s')
condition:state(s),position(p),perceive(fi)
effect:state(s')
where perceive(fi) is verified when fi∈Fp and

Compareτ(c
i
τ⋅ifi,tiτ)=true (in other words, field intensity

modulated by a receptiveness coefficient exceeds the
sensitivity threshold for that field). The coefficients ci

τ and
tiτ are those determined by the perception function for that
type of agent in the state s. The effect of the trigger action is
a change in agent’s state according to the third parameter.

The last possible action for an agent causes a change in
its position and can be specified as follows:

action:transport(p,fi,q)
condition:position(p),empty(q),near(p,q),perceive(fi)
effect:position(q),empty(p)
where empty(q) and near(p,q) are verified when q∈Pp

and q=〈⊥,Fq,Pq〉 (q is adjacent to p and it does not contain
agents). The effect of a transport action is thus to change the
position of the related agent.

B. Modeling Crowds with SCAs

The basic idea underlying the application of the SCA
model to represent environments and entities situated and
moving in it is that this kind of movement can be generated
by means of attraction and repulsion effects (as also
suggested in [9]). These effects are generated by means of
fields that can be emitted by specific point of the
environment, and that can be perceived as
attractive/repulsive or that can even be simply ignored by
different types of moving entities in specific states. Also
pedestrians themselves are able to emit fields and thus, in
turn, they can generate attraction/repulsion effects, and what
is called an ‘active walker’ model.

A thorough discussion of this modeling approach is out of
the scope of this paper and it can be found in [2], we will
now just give some indications of the main steps that must
be followed to define a SCA model starting from an abstract
description of a given scenario.

Definition of the spatial infrastructure of the
environment – a SCA space can represent a discrete
abstraction of a physical environment, in which a site
corresponds to a portion of space that can be occupied by a
pedestrian. For instance, a corridor and the rooms having a
door on it could be discretized in 40cm2 cells characterized
by a Von Neumann adjacency.

Definition of points of interest/reference in the
environment – specific spots of the environment can
represent elements of interest, reference points or
constraints (e.g. gateways, doorways) influencing pedestrian
movements. These elements must be associated with
immobile agents (e.g. door jambs) able to emit fields

indicating the presence of the point of interest/reference to
pedestrians. For instance, considering a corridor the exits
should be associated to suitable fields able to guide agents
towards them, but also possible doorways leading to rooms
should be provided with agents emitting proper fields.

Definition of mobile entities of the environment
(pedestrians) – the different types of mobile entities, agents
representing pedestrians, can be now defined in terms of
attitudes towards the movement in the environment (sort of
states indicating how an agent interprets fields in choosing
where to move). For instance, in the corridor example,
agents in different states could be attracted by different exits
of the corridors and thus could be attracted by the related
field, ignoring fields generated by doors leading to internal
rooms. This attitude could change according to internal
decisions of the agent, or to an external event perceived by
it. Of course, different agent types can have different
attitudes; summarizing, different agent types can interpret
fields in a different way, and agents of the same type,
according to their state, can also react in different way to the
perception of the same kind of signal.

Figure 2 – A diagram illustrating a multilayered
environment specification: the bottom layer is a fine
grained discretization of Scala Square and the top layer
represents its points of interest.

C. From a Single Layer to Multiple Layers

The previously introduced representation of the
environment can be enhanced by introducing additional
representations, for instance representing a different
abstraction of the physical space related to the virtual
environment. In particular, the different points of
interest/reference might be represented on a graph whose
links represent proximity or direct reachability relations
among the related points, realizing a sort of abstract map of
the environment. This layer might be interfaced to the
previously introduced finer representation of the
environment (i.e. the physical layer), and it could be the

effective source of fields generated by infrastructural
elements, that are diffused to the physical layer by means of
interfaces. A sample diagram illustrating this approach to
the modeling of a physical environment is shown in Figure
2: the bottom layer is a fine grained discretization of Scala
Square and the top layer represents its points of interest, that
are associated with agents emitting a proper distinctive
presence field.
The abstract map could also be (at least partly) owned by an
agent, that could thus make decisions on what attitude
towards movement should be selected according to its own
goals and according to the current context by reasoning
on/about the map, instead of following a predefined script.
This kind of considerations do not only emphasize the
usefulness of a multiple layered representation of the
environment, but they also point out the possibility to
enhance the current agents (that are characterized by a
reactive architecture) by endowing them with proper forms
of deliberation, towards a hybrid agent architecture. A
complete definition of these deliberative elements of the
situated agents is object of current and future works.

Figure 3 – Simplified class diagram of the part of the
framework devoted to the realization of MMASS
concepts and mechanisms.

IV. THE EXECUTION AND VISUALIZATION FRAMEWORK

As discussed in section II, the basic approach that was
adopted for this project is to integrate an existing MAS
modeling and development framework with an
infrastructure supporting an effective form of 3D
visualization of the dynamics generated by the model. In
particular, to realize the second component we adopted
Irrlicht7, an open-source 3D engine and usable in C++
language. It is cross-platform and it provides a performance
level that we considered suitable for our requirements. It
provides a high level API that was adopted for several
projects related to 3D and 2D applications like games or
scientific visualizations. The MAS modeling and
development framework we adopted is a C++ porting and
relevant refactoring of the original MMASS framework [2],
aimed at adapting it to the different programming language
and also at optimizing some mechanisms such as commonly
adopted field diffusion algorithms. The following
subsections will discuss the basic elements of this C++
version of the MMASS framework and the infrastructure
interfacing this module with the 3D visualization engine.

7 http://irrlicht.sourceforge.net/

A. Supporting and Executing MMASS Models

The MMASS framework adopted for this project is
essentially a library developed in C++ providing proper
classes to realize notions and mechanisms related to the
SCA and MMASS models. In particular, a simplified class
diagram of the MMASS framework is shown in Figure 3.
The lower part of the diagram is devoted to the
environment, and it is built around the BasicSite class. The
latter is essentially a graph node (i.e. it inherits from the
GraphNode class) that is characterized by the association
with a FieldManager. The latter provides the services
devoted to field management (diffusion, composition and
comparison, defined as abstract classes). An abstract space
is essentially an aggregation of sites, whose concretizations
define proper adjacency geometries (e.g. regular spaces
characterized by a Von Neumann adjacency or possibly
irregular graphs).

An abstract agent is necessarily situated in exactly one
site. Concrete agents defined for this specific framework are
active objects (that are used to define concrete points of
interest/reference to be adopted in a virtual environment)
and pedestrians (that are basic agents capable of moving in
the environment). Actual pedestrians and mobile agents that
a developer wants to include to the virtual environment must
be defined as subclasses of Pedestrian, overriding the basic
behavioural methods and specifically the action method.

Figure 4 – Simplified class diagram of the part of the
framework devoted to the management of the
visualization of the dynamics generated by the model.

B. Integrating the Models with a Realtime 3D Engine

While the previous elements of the framework are
devoted to the management of the behaviours of
autonomous entities and of the environment in which they
are situated, another relevant part of the described
framework is devoted to the visualization of these dynamics.
More than entering in the details of how the visualization
library was employed in this specific context, we will now
focus on how the visualization modules were integrated
with the previously introduced MMASS framework in order
to obtain indications on the scene that must be effectively
visualized.

Figure 4 shows a simplified class diagram of the main
elements of the 3D Engine Library. The diagram also
includes the main classes that are effectively in charge of
inspecting the state of the MMASS environment and agents,
and of providing the relevant information to the
SceneManager that will translate it into a scene to be
visualized. The Project class act as a container of the 3D
models providing the graphical representation of the virtual
environment (Model3D objects), as well as the graph related
to the adopted discretization of this physical space (a Graph
object visually representing the previously discussed
physical layer). It also includes a set of Avatar objects, that
are three dimensional representations of Pedestrian objects
(introduced in the previous subsection).

The framework must be able to manage in a coordinated
way the execution of the model defined for the specific
virtual environment and the updating of its visualization. To
manage this coordinated execution of different modules and
procedures three main operative modes have been defined
and are supported by the framework. The first two are
characterized by the fact that agents are not provided with a
thread of control of their own. A notion of turn is defined
and agents are activated to execute one action per turn, in a

sequential way or in a conceptually parallel way (as for a
Cellular Automaton). In this case, respectively after each
agent action or after a whole turn the scene manager can
update the visualization. On the other hand, agents might be
associated with a thread of control of their own and no
particular fairness policy is enforced. The environment, and
more precisely the sites of the MMASS space, is in charge
of managing possible conflicts on the shared resource.
However, in order to support a fluid visualization of the
dynamics generated by the execution of the MAS, the
Pedestrian object before executing an action must
coordinate with the related Avatar: if the previous
movement was still not visualized, the action is temporarily
blocked until the visualization engine has updated the scene.
It must be noted that in all the introduced activation modes
the environment is in charge of a regulation function [7]
limiting agents’ autonomy for sake of managing the
consistency of the overall model or to manage a proper form
of visualization.

V. SAMPLE APPLICATIONS

The aim of this section is to present some sample
applications to show how the framework supports the
definition of MMASS models and the realization of an
effective three dimensional visualization. The applications
were also chosen to show the potential of the framework in
terms of execution of a large number of agents. Tests were

Figure 5 – Four screenshots of the first sample
application, showing the movement of very simple agents
from a starting room on the left, to an exit in the
rightmost room.

carried out on a notebook on which the Windows XP
Professional operating system was installed; the notebook
was provided with an Intel Pentium IV 2.4 GHz processor,
with 320 MB RAM and an ATI Raedon IGP graphic card
with 128 MB (shared system memory).

The first application is about the simulation of the
evacuation of a section of a building, comprising several
rooms connected by doors. In this specific scenario agents’
behaviours are very simple, and only provide the movement
towards specific exits. Agents reaching these exits are
simply eliminated from the scenario; some screenshots of
this example are shown in Figure 5. In this scenario the
environment comprises a graph of around 1000 sites,
connected by more than 3500 arcs; 150 agents are situated
in the scenario and they are activated according to
sequential activation strategy. The analytical results of the
simulation are not relevant in this context, also because the
agent models were not calibrated against real data; the
simulation was executed and visualized with a number of
frames per second (FPS) constantly above 60. The speed of
the simulation was in fact actually limited to achieve a

smooth form of visualization of the system dynamics.
 The second example is about the movement of agents

inside a virtual museum; the aim of the agents in this
scenario is to move outside the buildings to gather in
specific areas, as in case evacuation. In this case the
environment comprises around 2000 sites (a gross
discretization of the represented environment) with around
6000 arcs connecting them; 500 agents were randomly
positioned inside buildings, and they were provided with a
thread of control of their own. Both the environment and
agents were characterized by a 3D visual model, with
textures; some relevant screenshots of this sample
application are shown in Figure 6. Once again, the
analytical results of this simulation are not relevant, since
the agent models were extremely simple and they were not
calibrated against real data. The simulation was executed
and visualized with a number of FPS constantly above 30.

We also executed a stress test on a different hardware
configuration, to verify the scalability of the framework; the
workstation was based on Windows XP Professional
operating system, with an Intel Pentium Core 2 Duo 2.4
GHz, 2 GB RAM and a NVIDIA Quadro FX 3450 graphic
card with 256 MB. The test environment was constituted by
11000 sites, connected by around 44000 arcs; 10000 agents,
sequentially activated, were positioned in this environment.
Their behaviour was simply to move towards the closest
source of an ‘exit’ field; agents reaching the source were

Figure 6 – Four screenshots of the virtual museum
application, showing the structure of the environment -
(a) and (b) – a perspective view of the evacuation and
also a ‘bird’s eye’ view of the environment coupled with
three ‘first-person’ perspectives of agents – (c) and (d).

removed from the environment. The system was able to
execute and visualize the simulation with 22 FPS, when the
structure of the environment was hidden (reducing the
number of displayed triangles), and with 3 FPS when it was
visualized.

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

The paper has presented a framework supporting the
definition and realization of virtual environment inhabited
by interacting situated agents modeled according to the
Multilayered Multi-Agent Situated System. The framework
supports the specification and execution of visually rich 3D
virtual environment characterized by the presence of
situated agents acting and interacting inside it. The paper
briefly introduced some relevant related works, then it
presented the multi-agent model underlying the framework
and its basic architecture (with specific reference to the
integration of computational support to the formal model
and the visualization components). Sample applications
were also described in order to show the potential of the
framework in executing models comprising several
hundreds of agents producing an effective visualization of
the generated dynamics.

Future works are aimed, on the one hand, at improving
the set of support instruments, both methodological and
computational, supporting for instance the definition of the
spatial structure of the virtual environment. Some support
instruments, such as a tools for a semi-automatic realization
of discrete abstractions of an existing 3D model (e.g. a 3D
Studio design of an architectural space) was already
realized, but it must still undergo a thorough testing phase.
Additional relevant future works are instead aimed at
providing a more expressive modeling framework, as briefly
discussed in Section III-C.

REFERENCES
[1] S. Bandini, S. Manzoni, C. Simone. Heterogeneous Agents Situated in

Heterogeneous Spaces. Applied Artificial Intelligence, 16(9-10):831–
852, 2002.

[2] S. Bandini, M. L. Federici, S. Manzoni, G. Vizzari. Towards a
methodology for SCA based crowd simulations. In: VI International
Workshop Engineering Societies in the Agents’ World, vol. 3963 of
Lecture Notes in Artificial Intelligence, Springer-Verlag, pp. 203–
220, 2006.

[3] S. Bandini, S. Manzoni, G. Vizzari. Situated Cellular Agents: a Model
to Simulate Crowding Dynamics. IEICE - Transactions on
Information and Systems: Special Section on Cellular Automata,
Vol.E87-D(3):669-676, 2004.

[4] S. Bandini, S. Manzoni, G. Vizzari. Multi Agent Approach to
Localization Problems: the Case of Multilayered Multi Agent Situated
System. Web Intelligence and Agent Systems, IOS Press, 2(3):155-
166, 2004.

[5] S. Bandini, S. Manzoni, G. Vizzari. Towards a platform for
Multilayered Multi Agent Situated System based simulations:
focusing on field diffusion. Applied Artificial Intelligence, Taylor &
Francis, 20(4-5):327-351, 2006.

[6] S. Bandini, G. Mauri, G. Vizzari. Supporting Action-At-A-Distance in
Situated Cellular Agents. Fundamenta Informaticae, 69(3):251-271,
2006.

[7] S. Bandini, G. Vizzari. Regulation Function of the Environment in
Agent-Based Simulation. Environments for Multi-Agent Systems III,
Third International Workshop, E4MAS 2006, vol. 4389 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 157-169, 2007.

[8] M. Batty, A. Hudson-Smith. Urban Simulacra: From Real to Virtual
Cities, Back and Beyond, Architectural Design, 75 (6):42-47, 2005.

[9] M. Batty. Agent-based pedestrian modeling. In Advanced Spatial
Analysis: The CASA Book of GIS, pp. 81-106, 2003.

[10] J. Dijkstra, H. P. J. Timmermans. Towards a multi-agent model for
visualizing simulated user behavior to support the assessment of
design performance. Automation in Construction 11:135-145,
Elsevier, 2002.

[11] J. Dijkstra, J. Van Leeuwen, H. J. P. Timmermans. Evaluating Design
Alternatives Using Conjoint Experiments in Virtual Reality.
Environment and Planning B 30(3):357–367, 2003.

[12] J. Ferber. Multi-Agent Systems. Addison-Wesley, 1999.
[13] T. Ishida, Y. Nakajima, Y. Murakami, H. Nakanishi. Augmented

Experiment: Participatory Design with Multiagent Simulation. IJCAI
2007, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pp. 1341-1346, 2007.

[14] J. Klein. Breve: a 3D simulation environment for the simulation of
decentralized systems and artificial life. In Proceedings of Artificial
Life VIII, the 8th International Conference on the Simulation and
Synthesis of Living Systems. The MIT Press, pp. 329–334, 2002.
http://www.spiderland.org/breve/breve.pdf.

[15] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, G. Balan. MASON:
A Multi-Agent Simulation Environment. In Simulation 81(7) :517-
527, 2005.

[16] M. Mamei, F. Zambonelli. Motion Coordination in the Quake 3 Arena
Environment: A Field-Based Approach. Environments for Multi-
Agent Systems, First International Workshop, E4MAS 2004, vol.
3374 of Lecture Notes in Computer Science, Springer-Verlag, pp.
264-278, 2005.

[17] M. Mamei, F. Zambonelli. Field-Based Coordination for Pervasive
Multiagent Systems, Springer-Verlag, 2006.

[18] H. Nakanishi, S. Nakazawa, T. Ishida, K. Takanashi, K. Isbister. Can
Software Agents Influence Human Relations? - Balance Theory in
Agent-mediated Communities. International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2003), ACM
press, pp. 717-724, 2003.

[19] P. Nugues, S. Dupuy, A. Egges: Information Extraction to Generate
Visual Simulations of Car Accidents from Written Descriptions. In:
Computational Science and Its Applications - ICCSA 2003, vol. 2667
of Lecture Notes in Computer Science, Springer-Verlag, pp. 31-40,
2003.

[20] F. Nunnari, C. Simone. Perceiving awareness information through 3D
representations. Proceedings of the working conference on Advanced
Visual Interfaces, AVI 2004, ACM Press, pp. 443-446, 2004.

[21] G. Papagiannakis, S. Schertenleib, B. O'Kennedy, M. Arevalo-Poizat,
N. Magnenat-Thalmann, A. J. Stoddart, D. Thalmann: Mixing virtual
and real scenes in the site of ancient Pompeii. Journal of Visualization
and Computer Animation 16(1):11-24, 2005.

