
 

  
Abstract—This paper presents a framework supporting the 

definition and implementation of virtual environment 
inhabited by interacting situated agents defined according to 
the Multilayered Multi-Agent Situated System model. The 
framework supports the specification and execution of visually 
rich 3D virtual environment endowed by the presence of 
mobile agents acting and interacting inside it according to a 
multi-agent model. The paper briefly describes the related 
works and possible application scenarios for the framework, 
then it introduces the multi-agent model underlying the 
framework and its basic architecture. Sample applications are 
also described so as to show the potential of the framework in 
executing models comprising several hundreds of agents 
producing an effective visualization of the generated dynamics. 
 

Index Terms— multi-agent systems, virtual environments, 
simulation, 3D visualization 

I. INTRODUCTION 

HE design and realization of virtual environments 
inhabited by social entities is a significant application of 

the conjoint results of various research areas in computer 
science and engineering. Virtual environments have been 
exploited in several ways, and in particular: 

- to support computer mediated forms of human 
interaction, characterized by the introduction of 
Embodied Conversational Agents facilitating 
users’ interactions [18] or supplying awareness 
information in a visually effective form [20]; 

- to realize operational laboratories for 
participatory design, supporting the effective 
visualization of various alternative design 
choices to  the involved stakeholders  
[8][13][11]; 

- to provide effective instruments for the 
modeling, simulation and visualization of the 
dynamics of entities situated in a representation 
of an existing, planned or reconstructed 
environment or situation [10][19]; 

- for sake of entertainment, in movies, computer 
games or in online communities (see, e.g., 
Second Life1). 

 
While all these applications are characterized by a strong 
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requirement for realistic and effective visualization tools 
(and some of them require a thorough analysis of the system 
usability, due to the necessary accessibility by non-
technically skilled users), they also call for expressive 
models supporting the specification of behaviours for the 
entities that inhabit these environments, as well as the 
interaction among them and with the environment itself. The 
fact that the overall performance of the system is essentially 
dependant on the single actions and interactions that are 
carried out by entities inhabiting the modeled environment 
leads to consider that the Multi-Agent Systems [12] 
approach is particularly suited to tackle the modeling issues 
that are posed by this scenario. This idea is also 
corroborated by the fact that most of the above introduced 
references actually describe systems based on this approach, 
and by specific experiences in applying MAS approaches to 
specific virtual environments applications such as computer 
games [16]. 

In this vein, the main aim of this paper is to show the 
current advancement of a long term project that provides the 
realization of a framework supporting the development of 
MAS based simulations based on the Multilayered Multi-
Agent Situated System model provided with an effective 
form of 3D visualization. The main goal of the framework is 
to support a smooth transition from the definition of an 
MMASS based model of given situation (in terms of 
environment, relevant entities and their behaviours, 
expressed as individual actions interactions) to the 
realization of simulation systems characterized by an 
effective 3D user interface. One of the possible application 
areas of this kind of system is related to the modeling and 
simulation of crowds of pedestrians to support architectural 
design or urban planning [3][4]. In order to have 
information flowing appropriately from the formal model to 
design professionals (e.g. architects and urban planners), the 
MMASS-based simulator must be supported by adequate 
visualization and animation tools. Such supporting tools are 
the core issue of the present paper. 

The paper breaks down as follows: the following section 
discusses related works in different application scenarios, 
while section III briefly introduces the MMASS model and 
its application to model pedestrians situated and moving in 
representations of physical spaces. Section IV discusses the 
architecture of the proposed framework, its main 
components and the tools supporting developers adopting it. 
Section V presents two sample applications aimed at 
showing the potential of the framework in executing models 
comprising several hundreds of agents producing an 
effective visualization of the generated dynamics. 
Conclusions and future developments end the paper. 
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II.  RELATED WORKS AND APPLICATION SCENARIOS 

The realization of virtual environments inhabited by 
autonomous entities and characterized by a realistic three-
dimensional form of visualization was the goal of several 
projects, both commercial and academic, with different 
aims, features and available documentation. A complete and 
thorough description of the state of the art in this area, 
besides being extremely difficult to realize, is out of the 
scope of this paper; we will rather briefly report the survey 
activity that was carried out before starting the project and 
that motivated the effort related to the design and realization 
of the framework. 

The main aim of the research effort is to realize an 
instrument that, on one hand, supports an effective form of 
visualization of a virtual environment and, on the other, 
allows the specification of the behaviours of the 
autonomous entities that inhabit it in terms of an expressive 
agent based model. To this purpose, we considered several 
possible supporting instruments, both commercial and open 
source, both providing a basic enabling technology and also 
some projects providing a support to the phases of modeling 
and definition of agents behaviours. 

Some relevant representatives of the category of 
commercial instruments that can support the design and 
development of virtual environments are Quadstone 
Paramics2 and Massive3. Paramics is a traffic micro-
simulation software, that is able to generate realistic 3D 
visualizations of the simulated dynamics. Massive is instead 
an application specifically devoted to the generation of 
photorealistic animation of crowd-related visual effects (it 
was adopted for several films – e.g. to generate the battles 
of the Lord of the Ring – and commercials – e.g. to create 
the audience in a stadium). These instruments are generally 
extremely focused, very powerful, but their internal 
mechanisms are not well documented. In general they 
cannot be adapted to tackle application scenarios different 
from those they were originally conceived for; therefore 
they do not provide the degree of flexibility required by our 
project. 

Some open source efforts were also considered, and two 
relevant representatives of the analyzed platforms are 
Mason4 [15] and Breve5 [14]. Mason is a discrete-event 
multi-agent simulation library, designed to be the 
foundation for custom-purpose Java simulations. It also 
includes an optional suite of visualization tools in 2D and 
3D. However, this suite does not represent a proper support 
to the realization of a virtual environment, but rather a 
library for realizing simple 3D visualization of the simulated 
system. Breve, on the other hand, is a software package 
enabling the definition of 3D simulations of multi-agent 
systems and artificial life. It adopts a specific ad-hoc 
language (called “steve”) for the specification of agents’ 
behaviours. However, it is more focused on providing an 
abstract and extremely simplified 3D environment for 
specifying and testing multi-agent models and artificial life 
models, rather than supporting the realization of a detailed 
 

2 http://paramics-online.com/ 
3 http://www.massivesoftware.com/ 
4 http://cs.gmu.edu/~eclab/projects/mason/ 

virtual environment. 
The analyzed system that was closest to meet our 

requirements is Freewalk6, an application that was adopted 
in some of the previously cited applications of virtual 
environments. It adopts a scenario specification language, 
called Q, that supports the specification of the environment 
(that must be a VRML model) and the behaviours of agents 
(through the notion of scenario). Freewalk, however, is not 
an open-source project and the Q language is not very 
focused on the interaction among the agents and the 
environment (that can be conceived as an element having an 
influence on their behaviour that goes beyond the fact that it 
provides obstacles to their movement). These considerations 
lead us to consider the possibility to adopt a basic enabling 
infrastructure for an effective visualization of system 
dynamics and an existing model - MMASS [1] - and 
platform for the specification of situated MAS supporting 
the definition of virtual environments. The MMASS model 
is in fact characterized by the fact that agents’ environment 
is a first class element of the model, and it deeply influences 
agents’ perceptions and actions, supporting forms of 
interactions that are particularly suited to represent the 
movement of pedestrians in physical spaces [2]. 

III.  MULTILAYERED MULTI -AGENT SITUATED SYSTEM 

MODEL 

This section will introduce the basic elements of the 
MMASS model and its application to represent and manage 
mechanisms of interaction between the environment and 
active autonomous entities that are useful for the 
specification of dynamic virtual environments. We will start 
discussing the elements of a single layered model, a Situated 
Cellular Agents model, then we will show how it can be 
applied to represent physical environments and active 
entities situated and moving in it. The last subsection will 
discuss how a multilayered structure can be adopted to 
enhance the model and support more autonomous forms of 
agents’ behaviours. 

A. Situated Cellular Agents 

A system of Situated Cellular Agents can be denoted by 
the three-tuple 〈Space,F,A〉 where Space is a single layered 
environment where agents are situated, act autonomously 
and interact by means of reaction or through the propagation 
of fields belonging to the set F. Field based interaction is an 
indirect interaction mechanism that provides a modification 
of agents’ environment that can be perceived by agents 
according to their context and state; a more thorough 
description of field based interaction can be found in [17], 
whereas the specific SCA field-based interaction model is 
discussed in [6]. Agents belong to A, a finite set of agents, 
each characterized by a type determining their state, 
perceptive capabilities and behavioural specification. The 
elements of this three tuple will now be formally described. 

Space - The Space consists of a set P of sites arranged in 
a network (i.e. an undirected graph of sites). Each site p∈P 
can contain at most one agent and is defined by 〈ap,Fp,Pp〉 
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where ap∈A∪{⊥} is the agent situated in p (ap=⊥ when no 
agent is situated in p, in other words p is empty); Fp⊆F is 
the set of fields active in p (Fp=∅ when no field is active in 
p); and Pp⊂P is the set of sites adjacent to p. Edges 
connecting sites represent a constraint to the movement of 
agents situated in the environment and also on the diffusion 
of fields, which only propagate through these connections. 

Fields - A field fτ∈F that can be emitted by agents of 
type τ is denoted by the four-tuple 
〈Wτ,Diffusionτ,Compareτ,Composeτ〉  where:  

• Wτ=S×N, where S⊆Στ, denotes the set of values that 
the field can assume; given wτ∈Wτ, wτ=〈sτ,iτ〉, where s∈S 
represents information brought by the field (i.e. the field 
payload) and iτ∈N represents its intensity. 

• Diffusionτ:P×Wτ×P→Wτ is the diffusion function for 
field type τ; Diffusionτ(ps,wτ,pd) computes the value of a 
field on a given destination site (pd) taking into account in 
which site it was emitted (ps) and with which initial value 
(wτ∈Wτ). 

• Compareτ:Wτ×Wτ→{True,False} is the function that 
compares field values. It is used by the perceptive system of 
agents to evaluate if the value of a certain field type is such 
that it can be perceived. 

• Composeτ:(Wτ)
+→Wτ expresses how field values of 

the same type have to be combined in order to obtain the 
unique value of a field type at a given site.  

Agent Types - The possibility to define different agent 
types introduces heterogeneity, in other words the chance to 
define different abilities and perceptive capabilities. 
Defining T the set of types, it is appropriate to partition the 
set of agents in disjoint subsets corresponding to different 
types. The set of agents can thus be defined as 
A=τ∈TAτ where Aτi

∩Aτj
=Ø for i≠j. An agent type τ is 

defined by the three tuple 〈Στ,Perceptionτ,Actionτ〉 where: 
• Στ defines the set of states that agents of type τ can 

assume; 
• Perceptionτ:Στ→[N×Wf1]...[N×Wf|F|

]  is a function 
associating to each agent state the vector of pairs 
representing respectively a receptiveness coefficient 
modulating the intensity of that kind of field and a 
sensitivity threshold represented by a specific field value; 
these functions represent the perceptive capabilities 
specification for that type of agent and their usage will be 
clarified in the description of agents and their behaviours. 
Formally, this vector of pairs is defined as 

( ) ( ) ( ))(),(,...,)(),(,)(),( 2211 stscstscstsc FF
ττττττ  

where for each i (i=1...|F|), ci
τ(s) and tiτ(s) express 

respectively a receptiveness coefficient to be applied to the 
field value fi and the agent sensibility threshold to fi in the 
given agent state s. 

• Actionsτ denotes the set of actions that agents of type τ 
can perform, and will be described in the following.  

Agents and their Behaviours - An agent a∈A is defined 
by the three–tuple 〈s,p,τ〉, where:  

• s∈Στ denotes the agent state and can assume one of the 
values specified by its type; 

• p∈P is the site of the Space where the agent is situated; 
• τ is the agent type, which provides the allowed states, 

perceptive capabilities and behavioural specification for that 
type of agents.  

The first two elements were previously introduced, we 
will now focus on Actionτ, which is made up of a set of 
actions and an action selection strategy. Actions can be 
selected from a set of primitives which include reaction 
(synchronous interaction among adjacent agents), field 
emission (asynchronous interaction among at–a–distance 
agents through the field diffusion–perception–action 
mechanism), trigger (change of agent state as a consequence 
of a perceived event) and transport (agent movement across 
the space). The two interaction mechanisms provided by the 
SCA model (i.e. reaction and field–based interaction) are 
also described by the diagram in Figure 1. Every primitive 
will be now briefly described specifying preconditions and 
effects. It must be noted that an action selection strategy is 
invoked when the preconditions of more than one action are 
verified; several possible strategies can be defined, but in 
this context a non–deterministic choice among possible 
action was adopted. 
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Figure 1 – A diagram showing the two interaction 
mechanisms provided by the SCA model: two reacting 
agents on the left, and a field emission on the right. 

 
The behavior of Situated Cellular Agents is influenced by 

agents situated on adjacent positions and, according to their 
type and state agents are able to synchronously change their 
states. Synchronous interaction (i.e. reaction) is a two–step 
process. Reaction among a set of agents takes place through 
the execution of a protocol introduced in order to 
synchronize the set of autonomous agents. When an agent 
wants to react with the set of its adjacent agents since their 
types satisfy some required condition, it starts an agreement 
process whose output is the subset of its adjacent agents that 
have agreed to react. An agent agreement occurs when the 
agent is not involved in other actions or reactions and when 
its state is such that this specific reaction could take place. 
The agreement process is followed by the synchronous 
reaction of the set of agents that have agreed to it. Reaction 
of an agent a situated in site p∈P can be specified as:  

action:reaction(s,ap1,ap2,...,apn,s') 
condition:state(s),position(p),agreed(ap1,ap2,...,apn) 
effect:state(s') 
where state(s) and agreed(ap1,ap2,...,apn) are verified 

when the state of agent a is s and agents situated in sites 
{ p1,p2,...,pn} ⊆Pp have previously agreed to undertake a 
synchronous reaction. The effect of a reaction is the 
synchronous change in state of the involved agents; in 
particular, agent a changes its state into s'. 

Other possible actions are related to the indirect 
interaction mechanism, related to field emission and to the 
perception–deliberation–action mechanism. Agent emission 
can be defined as follows: 

 



 

action:emit(s,f,p) 
condition:state(s),position(p) 
effect:added(f,p) 
where state(s) and position(p) are verified when the agent 

state is s and int position is p. The effect of the emit action is 
a change in the active fields related to sites involved in the 
diffusion, according to Diffusionf. One of the possible 
effects of an agent perception of a certain field fi can be 
defined as  

action:trigger(s,fi,s') 
condition:state(s),position(p),perceive(fi) 
effect:state(s') 
where perceive(fi) is verified when fi∈Fp and 

Compareτ(c
i
τ⋅ifi,tiτ)=true (in other words, field intensity 

modulated by a receptiveness coefficient exceeds the 
sensitivity threshold for that field). The coefficients ci

τ and 
tiτ are those determined by the perception function for that 
type of agent in the state s. The effect of the trigger action is 
a change in agent’s state according to the third parameter. 

The last possible action for an agent causes a change in 
its position and can be specified as follows:  

action:transport(p,fi,q) 
condition:position(p),empty(q),near(p,q),perceive(fi) 
effect:position(q),empty(p) 
where empty(q) and near(p,q) are verified when q∈Pp 

and q=〈⊥,Fq,Pq〉 (q is adjacent to p and it does not contain 
agents). The effect of a transport action is thus to change the 
position of the related agent. 

B. Modeling Crowds with SCAs 

The basic idea underlying the application of the SCA 
model to represent environments and entities situated and 
moving in it is that this kind of movement can be generated 
by means of attraction and repulsion effects (as also 
suggested in [9]). These effects are generated by means of 
fields that can be emitted by specific point of the 
environment, and that can be perceived as 
attractive/repulsive or that can even be simply ignored by 
different types of moving entities in specific states. Also 
pedestrians themselves are able to emit fields and thus, in 
turn, they can generate attraction/repulsion effects, and what 
is called an ‘active walker’ model. 

A thorough discussion of this modeling approach is out of 
the scope of this paper and it can be found in [2], we will 
now just give some indications of the main steps that must 
be followed to define a SCA model starting from an abstract 
description of a given scenario. 

Definition of the spatial infrastructure  of the 
environment – a SCA space can represent a discrete 
abstraction of a physical environment, in which a site 
corresponds to a portion of space that can be occupied by a 
pedestrian. For instance, a corridor and the rooms having a 
door on it could be discretized in 40cm2 cells characterized 
by a Von Neumann adjacency. 

Definition of points of interest/reference in the 
environment – specific spots of the environment can 
represent elements of interest, reference points or 
constraints (e.g. gateways, doorways) influencing pedestrian 
movements. These elements must be associated with 
immobile agents (e.g. door jambs) able to emit fields 

indicating the presence of the point of interest/reference to 
pedestrians. For instance, considering a corridor the exits 
should be associated to suitable fields able to guide agents 
towards them, but also possible doorways leading to rooms 
should be provided with agents emitting proper fields. 

Definition of mobile entities of the environment 
(pedestrians) – the different types of mobile entities, agents 
representing pedestrians, can be now defined in terms of 
attitudes towards the movement in the environment (sort of 
states indicating how an agent interprets fields in choosing 
where to move). For instance, in the corridor example, 
agents in different states could be attracted by different exits 
of the corridors and thus could be attracted by the related 
field, ignoring fields generated by doors leading to internal 
rooms. This attitude could change according to internal 
decisions of the agent, or to an external event perceived by 
it. Of course, different agent types can have different 
attitudes; summarizing, different agent types can interpret 
fields in a different way, and agents of the same type, 
according to their state, can also react in different way to the 
perception of the same kind of signal. 

 
Figure 2 – A diagram illustrating a multilayered 
environment specification: the bottom layer is a fine 
grained discretization of Scala Square and the top layer 
represents its points of interest. 

C. From a Single Layer to Multiple Layers 

The previously introduced representation of the 
environment can be enhanced by introducing additional 
representations, for instance representing a different 
abstraction of the physical space related to the virtual 
environment. In particular, the different points of 
interest/reference might be represented on a graph whose 
links represent proximity or direct reachability relations 
among the related points, realizing a sort of abstract map of 
the environment. This layer might be interfaced to the 
previously introduced finer representation of the 
environment (i.e. the physical layer), and it could be the 



 

effective source of fields generated by infrastructural 
elements, that are diffused to the physical layer by means of 
interfaces. A sample diagram illustrating this approach to 
the modeling of a physical environment is shown in Figure 
2: the bottom layer is a fine grained discretization of Scala 
Square and the top layer represents its points of interest, that 
are associated with agents emitting a proper distinctive 
presence field. 
The abstract map could also be (at least partly) owned by an 
agent, that could thus make decisions on what attitude 
towards movement should be selected according to its own 
goals and according to the current context by reasoning 
on/about the map, instead of following a predefined script. 
This kind of considerations do not only emphasize the 
usefulness of a multiple layered representation of the 
environment, but they also point out the possibility to 
enhance the current agents (that are characterized by a 
reactive architecture) by endowing them with proper forms 
of deliberation, towards a hybrid agent architecture. A 
complete definition of these deliberative elements of the 
situated agents is object of current and future works. 

 
Figure 3 – Simplified class diagram of the part of the 
framework devoted to the realization of MMASS 
concepts and mechanisms. 

IV.  THE EXECUTION AND VISUALIZATION FRAMEWORK 

As discussed in section II, the basic approach that was 
adopted for this project is to integrate an existing MAS 
modeling and development framework with an 
infrastructure supporting an effective form of 3D 
visualization of the dynamics generated by the model. In 
particular, to realize the second component we adopted 
Irrlicht7, an open-source 3D engine and usable in C++ 
language. It is cross-platform and it provides a performance 
level that we considered suitable for our requirements. It 
provides a high level API that was adopted for several 
projects related to 3D and 2D applications like games or 
scientific visualizations. The MAS modeling and 
development framework we adopted is a C++ porting and 
relevant refactoring of the original MMASS framework [2], 
aimed at adapting it to the different programming language 
and also at optimizing some mechanisms such as commonly 
adopted field diffusion algorithms. The following 
subsections will discuss the basic elements of this C++ 
version of the MMASS framework and the infrastructure 
interfacing this module with the 3D visualization engine. 

 
7 http://irrlicht.sourceforge.net/ 

A. Supporting and Executing MMASS Models 

The MMASS framework adopted for this project is 
essentially a library developed in C++ providing proper 
classes to realize notions and mechanisms related to the 
SCA and MMASS models. In particular, a simplified class 
diagram of the MMASS framework is shown in Figure 3. 
The lower part of the diagram is devoted to the 
environment, and it is built around the BasicSite class. The 
latter is essentially a graph node (i.e. it inherits from the 
GraphNode class) that is characterized by the association 
with a FieldManager. The latter provides the services 
devoted to field management (diffusion, composition and 
comparison, defined as abstract classes). An abstract space 
is essentially an aggregation of sites, whose concretizations 
define proper adjacency geometries (e.g. regular spaces 
characterized by a Von Neumann adjacency or possibly 
irregular graphs). 

An abstract agent is necessarily situated in exactly one 
site. Concrete agents defined for this specific framework are 
active objects (that are used to define concrete points of 
interest/reference to be adopted in a virtual environment) 
and pedestrians (that are basic agents capable of moving in 
the environment). Actual pedestrians and mobile agents that 
a developer wants to include to the virtual environment must 
be defined as subclasses of Pedestrian, overriding the basic 
behavioural methods and specifically the action method. 

 

 
Figure 4 – Simplified class diagram of the part of the 
framework devoted to the management of the 
visualization of the dynamics generated by the model. 

B. Integrating the Models with a Realtime 3D Engine 

While the previous elements of the framework are 
devoted to the management of the behaviours of 
autonomous entities and of the environment in which they 
are situated, another relevant part of the described 
framework is devoted to the visualization of these dynamics. 
More than entering in the details of how the visualization 
library was employed in this specific context, we will now 
focus on how the visualization modules were integrated 
with the previously introduced MMASS framework in order 
to obtain indications on the scene that must be effectively 
visualized. 



 

Figure 4 shows a simplified class diagram of the main 
elements of the 3D Engine Library. The diagram also 
includes the main classes that are effectively in charge of 
inspecting the state of the MMASS environment and agents, 
and of providing the relevant information to the 
SceneManager that will translate it into a scene to be 
visualized. The Project class act as a container of the 3D 
models providing the graphical representation of the virtual 
environment (Model3D objects), as well as the graph related 
to the adopted discretization of this physical space (a Graph 
object visually representing the previously discussed 
physical layer). It also includes a set of Avatar objects, that 
are three dimensional representations of Pedestrian objects 
(introduced in the previous subsection). 

The framework must be able to manage in a coordinated 
way the execution of the model defined for the specific 
virtual environment and the updating of its visualization. To 
manage this coordinated execution of different modules and 
procedures three main operative modes have been defined 
and are supported by the framework. The first two are 
characterized by the fact that agents are not provided with a 
thread of control of their own. A notion of turn is defined 
and agents are activated to execute one action per turn, in a 

sequential way or in a conceptually parallel way (as for a 
Cellular Automaton). In this case, respectively after each 
agent action or after a whole turn the scene manager can 
update the visualization. On the other hand, agents might be 
associated with a thread of control of their own and no 
particular fairness policy is enforced. The environment, and 
more precisely the sites of the MMASS space, is in charge 
of managing possible conflicts on the shared resource. 
However, in order to support a fluid visualization of the 
dynamics generated by the execution of the MAS, the 
Pedestrian object before executing an action must 
coordinate with the related Avatar: if the previous 
movement was still not visualized, the action is temporarily 
blocked until the visualization engine has updated the scene. 
It must be noted that in all the introduced activation modes 
the environment is in charge of a regulation function [7] 
limiting agents’ autonomy for sake of managing the 
consistency of the overall model or to manage a proper form 
of visualization. 

V. SAMPLE APPLICATIONS 

The aim of this section is to present some sample 
applications to show how the framework supports the 
definition of MMASS models and the realization of an 
effective three dimensional visualization. The applications 
were also chosen to show the potential of the framework in 
terms of execution of a large number of agents. Tests were 

Figure 5 – Four screenshots of the first sample 
application, showing the movement of very simple agents 
from a starting room on the left, to an exit in the 
rightmost room. 



 

carried out on a notebook on which the Windows XP 
Professional operating system was installed; the notebook 
was provided with an Intel Pentium IV 2.4 GHz processor, 
with 320 MB RAM and an ATI Raedon IGP graphic card 
with 128 MB (shared system memory). 

The first application is about the simulation of the 
evacuation of a section of a building, comprising several 
rooms connected by doors. In this specific scenario agents’ 
behaviours are very simple, and only provide the movement 
towards specific exits. Agents reaching these exits are 
simply eliminated from the scenario; some screenshots of 
this example are shown in Figure 5. In this scenario the 
environment comprises a graph of around 1000 sites, 
connected by more than 3500 arcs; 150 agents are situated 
in the scenario and they are activated according to 
sequential activation strategy. The analytical results of the 
simulation are not relevant in this context, also because the 
agent models were not calibrated against real data; the 
simulation was executed and visualized with a number of 
frames per second (FPS) constantly above 60. The speed of 
the simulation was in fact actually limited to achieve a 

smooth form of visualization of the system dynamics. 
 The second example is about the movement of agents 

inside a virtual museum; the aim of the agents in this 
scenario is to move outside the buildings to gather in 
specific areas, as in case evacuation. In this case the 
environment comprises around 2000 sites (a gross 
discretization of the represented environment) with around 
6000 arcs connecting them; 500 agents were randomly 
positioned inside buildings, and they were provided with a 
thread of control of their own. Both the environment and 
agents were characterized by a 3D visual model, with 
textures; some relevant screenshots of this sample 
application are shown in Figure 6. Once again, the 
analytical results of this simulation are not relevant, since 
the agent models were extremely simple and they were not 
calibrated against real data. The simulation was executed 
and visualized with a number of FPS constantly above 30. 

We also executed a stress test on a different hardware 
configuration, to verify the scalability of the framework; the 
workstation was based on Windows XP Professional 
operating system, with an Intel Pentium Core 2 Duo 2.4 
GHz, 2 GB RAM and a NVIDIA Quadro FX 3450 graphic 
card with 256 MB. The test environment was constituted by 
11000 sites, connected by around 44000 arcs; 10000 agents, 
sequentially activated, were positioned in this environment. 
Their behaviour was simply to move towards the closest 
source of an ‘exit’ field; agents reaching the source were 

Figure 6 – Four screenshots of the virtual museum 
application, showing the structure of the environment - 
(a) and (b) – a perspective view of the evacuation and 
also a ‘bird’s eye’ view of the environment coupled with 
three ‘first-person’ perspectives of agents – (c) and (d). 
 



 

removed from the environment. The system was able to 
execute and visualize the simulation with 22 FPS, when the 
structure of the environment was hidden (reducing the 
number of displayed triangles), and with 3 FPS when it was 
visualized. 

VI.  CONCLUSIONS AND FUTURE DEVELOPMENTS 

The paper has presented a framework supporting the 
definition and realization of virtual environment inhabited 
by interacting situated agents modeled according to the 
Multilayered Multi-Agent Situated System. The framework 
supports the specification and execution of visually rich 3D 
virtual environment characterized by the presence of 
situated agents acting and interacting inside it. The paper 
briefly introduced some relevant related works, then it 
presented the multi-agent model underlying the framework 
and its basic architecture (with specific reference to the 
integration of computational support to the formal model 
and the visualization components). Sample applications 
were also described in order to show the potential of the 
framework in executing models comprising several 
hundreds of agents producing an effective visualization of 
the generated dynamics. 

Future works are aimed, on the one hand, at improving 
the set of support instruments, both methodological and 
computational, supporting for instance the definition of the 
spatial structure of the virtual environment. Some support 
instruments, such as a tools for a semi-automatic realization 
of discrete abstractions of an existing 3D model (e.g. a 3D 
Studio design of an architectural space) was already 
realized, but it must still undergo a thorough testing phase. 
Additional relevant future works are instead aimed at 
providing a more expressive modeling framework, as briefly 
discussed in Section III-C. 
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