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Abstract— Service-Oriented Architecture (SOA) is more and
more recognised by the industry as the reference blueprint
for building inter-operable, distributed enterprise applications
based on open standards such as Web Services (WS). In the
current state-of-the-art, the programming models for engineering
SOA systems proposed by the leading industries are essentially
component-based – typically, rooted in object-oriented abstrac-
tions and technologies. On the side, such a choice benefits
from the well-know advantages of component-based software
engineering and from the maturity of the available technologies;
on the other, however, the abstraction level provided is inadequate
to model some fundamental SOA aspects – such as autonomy,
control-uncoupling, data-driven interaction, activities – as first-
class concepts. Such features can be modelled quite naturally by
adopting an agent-oriented perspective.

In this paper we describe simpA-WS, a Java-based framework
for developing SOA/WS applications which adopts an agent-
oriented programming model based on the general-purpose
Agents and Artifacts meta-model (A&A). simpA-WS makes it
possible to conceive, design and program services (and applica-
tions using services) as workspaces where ensemble of pro-active,
activity-oriented entities (agents) work together by exploiting
different kinds of passive function-oriented entities (artifacts)
used as resources, along with tools to support their business
activities. Accordingly, we first present the simpA-WS framework
and the related simpA language – an extension of Java aimed
at capturing the A&A metaphors as first-class entities; we then
show how agents and artifacts can be programmed in simpA and
how SOA/WS applications can be programmed in simpA-WS; a
simple running example is discussed for concreteness.

I. INTRODUCTION

Nowadays Web Services (WS) represent the reference
standard technologies for setting up distributed systems that
need to support interoperable machine-to-machine interaction
between heterogeneous applications distributed over a network
[17]. In that context, Service-Oriented Architecture (SOA) ap-
pears to be more and more the reference software architecture
promoted by leading industries—IBM, Microsoft, Sun, IONA,
Bea, to cite few ones—as a blueprint for organising, designing
and building distributed enterprise applications based WS open
set standards [2], [4].

Generally speaking, SOA can be defined as an open, agile,
extensible, federated, composable architecture comprised of
autonomous, QoS-capable, vendor diverse, inter-operable, dis-
coverable, and potentially reusable services [4]. From a soft-
ware architecture perspective, SOA defines how to use loosely
coupled software services for supporting the requirements of
the business and software users, making resources available on
a network as independent services that can be accessed without
knowing their implementation platform. From an information
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systems perspective, SOA enables the creation of applications
by combining loosely-coupled, inter-operable services. Despite
the specific perspective, service-oriented architectures based
on Web Services are well going to be adopted by the industry
as the reference choice for inter-operable, distributed systems.

A key issue here is the programming model to be adopted
for SOA applications [7] – that is, the model defining the
concepts and abstractions made available to developers. From
this viewpoint, SOA per-se is not committed to any specific
programming model: however, the ones currently promoted
by leading software vendors are essentially component-based
[16], so as to rely on mature and widespread technologies.
Yet, in this paper we argue that such a choice is unable to
handle some essential requirements of SOA systems—such
as autonomy, control-uncoupling and data / message-driven
interactions—at a suitable abstraction level. For this reason,
there is a need for a programming model based on agent-
oriented abstractions, which makes it possible to deal with
such requirements in an effective and more natural way.

Agents and Multi-Agent Systems (MAS) have already been
recognised as suitable approaches for engineering complex,
intelligent service-oriented applications, aimed at integrating
research outcomes from different contexts such as Semantic
Web and Artificial Intelligence [10]. Here, however, we explic-
itly focus on designing and programming issues, discussing
how agents and MAS could provide effective building blocks
for the design and development of SOA applications.

The remainder of the paper is organised as follows. In
Section II we focus on the requirements that any programming
model for SOA application programming should satisfy, and
briefly review from this viewpoint the main programming
models currently promoted by the industry. Then, in Sec-
tion III we introduce an agent-oriented programming model
for SOA/WS based on agents and artifacts. In Section V we
present simpA-WS, as a simple Java-based middleware for
supporting such a programming model; conclusions are drawn
in Section VI.

II. BACKGROUND: SOA PROGRAMMING MODELS

In order to evaluate the effectiveness of a programming
model for SOA, it is first necessary to outline the main
properties that a SOA system should exhibit according to the
reference literature (see for instance [2], [4]).

Encapsulation is the basic property for achieving service in-
dependency from the context: services encapsulate their logic,
whose size and scope can vary, and can possibly encompass
the logic provided by other services; in other words, one or
more services can be composed into a collective service.

Autonomy is strongly related to encapsulation, since services
must clearly have control over the logic they encapsulate. As



a consequence of such an autonomy, inter-service relation-
ships should minimise dependencies – in particular, control
dependencies – retaining only the awareness of each other:
this is what we mean by loose coupling. Such an awareness
is achieved through the use of service descriptions, which are
exploited by users to understand how to use and interact with
the service. Communication is another fundamental dimension
in SOA, since services must exchange information in order to
interact and accomplish their task.

Autonomy, encapsulation and loose coupling properties
clearly condition the interaction model that can be used to en-
able communication both between the service user and service
providers, and among services. In principle, any interaction
model capable of preserving loosely coupled relationship
can be adopted: messaging is the reference communication
framework typically considered for this purpose. Conversely,
interaction models based on Remote Procedure Call (RPC) or
method invocation are inadequate, since they involve a control
coupling between the interacting parts. This is indeed quite a
critical aspect: most of the frameworks currently proposed as
killer technologies for the rapid prototyping of Web Service
applications adopt a pure OO-style in defining and interact-
ing with Web Services, mapping – for instance – service
invocations onto method invocations. A clear example of this
trend is the programming model adopted by the Java API
for XML Web Services (JAX-WS) [8], which defines a Web
Service by simply annotating the corresponding Java class
class with the @WebService annotation, and its methods
– which implementing the Web Service operations – with
the @WebMethod annotation. An analogous support can be
found in the Web Service Extension (WSE) provided by the
Microsoft .NET platform.

Our view is that the above critical aspect is mainly due to a
fundamental mismatch between the SOA and object-orientated
paradigm – with the object-oriented paradigm often adopted
to engineer distributed (and concurrent) systems – rather than
to weaknesses in today’s technologies. In fact, although it is
possible to build such kinds of systems on top of available
OO platforms exploiting middleware such as CORBA, RMI or
alike, the abstraction level provided is inadequate for applica-
tion design and implementation, in that OO lacks abstractions
to deal with loose-coupled communication, concurrency, and
distribution.

Consequently, new programming models are needed for
implementing SOA systems, which preserve the basic prop-
erties required from Web Services. For this purpose, some
proposals have been pushed by leading industries in the
state-of-the-art: Service Component Architecture (SCA) [5],
for instance, is promoted by independent software vendors
such as IBM, SAP, IONA, Oracle, BEA, TIBCO — to cite
some. Analogous initiatives are the Windows Communication
Foundation (previously called Indigo), promoted by Microsoft,
and the Java Business Integration (JBI), promoted by the
Java Community process [9]. All such approaches adopt a
component-based programming model: components imple-
ment the business logic, offer their capabilities to other com-
ponents, and consume functions offered by other components
through suitable Service-Oriented interfaces (Figure 1 shows

Fig. 1. An abstract representation of the Service Component Architecture,
reported in [5].

abstract representation of the Service Component Architec-
ture, taken from [5]) using a minimum of middleware APIs.
Components are linked together according to some wiring
model, which is meant to support different kinds of interaction
models and features, including synchronous and asynchronous
invocation, transactional behaviour of components invocation,
and so on. Service implementation and service composition are
uncoupled from both the details of the infrastructure and of
the access methods used for service invocation: these typically
include Web services, Messaging systems and CORBA IIOP.

As it can be expected, such an approach inherits on the one
side the well-known strong points of the component-oriented
paradigm in terms of dynamic configurability, reusability, etc.,
but also its weakness in dealing with processes and activities,
concurrency, autonomy, distribution, decentralisation and en-
capsulation of control – to cite some. Neither object-oriented,
nor component-based programming models provide first-class
abstractions to explicitly model and manage the above issues:
in particular, both objects and components are passive entities
encapsulating their state and behaviour, but not the control
of such a behaviour, which is typically hidden in some part
of the component’s “container” – whatever this may be. As
a consequence, even if components are meant in principle to
encapsulate the business-level logic, they fail to encapsulate
some key aspects of such a logic – such as, for instance,
the execution and control of (possibly concurrent, possibly
interacting) business activities and processes. To overcome
these limitations, in the next section we introduce a program-
ming model based on agent-oriented abstractions, aimed at
capturing the above aspects in a full-fledged way. troppo forte?

III. AN AGENT-ORIENTED PROGRAMMING MODEL FOR
SOA AND WEB SERVICES

Interestingly, the word agent appears both in the abstract
description of the Web Service reference architecture provided
by W3C [17] (sketched in Figure 2), and – more generally –
in the high level characterisation of SOA [4]. There, an agent
is used to represent:

• the service requestor, which encapsulates the business
logic on how to use services: from an interaction point
of view, this results in sending and receiving messages in
compliance with the service interface specification;



Fig. 2. Service Model of Web Services, according to W3C

• the service provider, which encapsulates the business
logic of the service: this processes the requestor mes-
sages, executes the related activities and interacts with the
requestor via the message exchange protocol specified in
the service description.

So, some notion of agent already appears in the standards
as a key part of the picture, representing the entities that
perform some activity or achieve some goal, thus shaping
the business logic either on the user’s or on the service’s
side. However, such abstraction level disappears when moving
from the abstract characterisation down to the design and
development levels, as discussed in the previous section. Our
proposal is to keep that abstraction level alive throughout
the engineering process, exploiting agents and MAS as the
basic bricks of a programming model explicitly tailored to the
definition of services and of applications using such services.

The fundamental outcome of this approach is to reduce the
gap between the business-level description and the models and
architectures used at the system implementation level.

In fact, despite the differences between the existing agent-
oriented methodologies, models and architectures, the agent-
oriented paradigm in se provides precisely the high-level
concepts — activity, goal, task, message-driven interaction,
. . . — that are needed from a programming model in order to
map the metaphors used at the business description level. In
the next Section we introduce an agent-oriented programming
model called SA&A, based on a the A&A conceptual model.

A. The A&A Conceptual Model

A wide range of agent programming models, architectures
and platforms can be found in literature (see [6] for a
brief survey of the programming languages and platforms).
For historical reasons, most of them are AI-oriented, thus
with a characterisation of the agent and MAS abstractions
focussed on AI concepts, aimed at building systems exhibiting

a somewhat intelligent behaviour. The Agents and Artifacts
conceptual model (A&A henceforth) [12], instead, was defined
with a software engineering perspective in mind: as such,
it highlights the features needed for an effective design and
development of complex software systems.

Grown from inter-disciplinary studies involving Activity
Theory and Distributed Cognition [11], A&A adopts agents
and artifacts as high-level abstractions to design and build
distributed, concurrent software systems. These metaphors are
taken from human cooperative working environments, where
“systems” are composed by individual autonomous entities
(humans) who pro-actively carry on some kind of work (ac-
tivities) by interacting and cooperating. A fundamental aspect
of such cooperative systems is the context—i.e. the environ-
ment—that makes it possible for such activities to take place.
Humans cooperative environments are full of suitable artifacts
and tools, that humans produce, consume and use to support
their work. Following Activity Theory, the term artifact is used
here to identify both the resources and objects constructed
during the activities, as well as whatever instrument built or
exploited by humans to support their activities.

In A&A these metaphors are brought into the software engi-
neering process, modelling complex software systems in terms
of workspaces where ensembles of pro-active entities—the
agents—work together by producing, consuming, sharing and
cooperatively using different kinds of artifacts, analogously to
the human case.

B. Agents and Artifacts
Agents represent entities with a (pro-)active behaviour, de-

signed by engineers so as to perform some kind of useful work,
cooperatively and concurrently to the work of the other agents.
The agent abstraction is well suited for encapsulating the
execution and control of the business activities and processes
that are part of the business logic. Artifacts, in turn, represent
passive entities that populate the agents’ working environment:
they are designed by engineers as resources and tools to be
used by agents for their (individual or collective) work.

So, on the agent side, A&A promotes an activity-oriented
model, where the agents’ pro-active behaviour is modelled
in terms of activities whose execution and control is fully
encapsulated inside the agent; on the other, agents manipulate,
produce, exploit, update artifacts which constitute the tools
needed for their work.

Activities are expressed in terms of actions, that is atomic
step determining some kind of change either in the agent
state (internal actions) or in the environment (external actions
or simply actions). Sensing—representing here the action of
perceiving —is the basic mechanisms that enables an agent to
get information from its environment.

Artifacts are used by agents as source or target of their work,
and greatly vary nature and function — including, for instance,
the tools for enabling agent communication and coordination
such as blackboards, message boxes, and calendars, which are
typical coordination artifacts [13]. Instead, shared knowledge
bases or artifacts representing or wrapping I/O devices are
typical examples of resource artifacts. Each artifact is explic-
itly designed by MAS engineers to encapsulate some kind of
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Fig. 3. (Left) An abstract representation of an application according to the A&A programming model, as a collection of agents (circles) sharing and using
artifacts (squares), grouped in workspaces. (Center) An abstract representation of an agent, as an entity executing actions and getting perceptions from the
environment where it is logically situated. (Right) An abstract representation of an artifact, with its usage interface and observable properties in evidence.

function, here synonym of “intended purpose”; any function
is structured into a set of operations. In order to be used by
agents, each artifact exposes a usage interface, which defines
the set of controls on which the agents can act upon so as to
trigger and control the execution of operations. Such execution
can result in the generation by the artifact of observable events,
that can be perceived by the agents which are using the artifact.
Usage interface controls have a name and possibly parameters,
which must be specified by agents when using the artifact.

Summing up, the interaction between agents and artifacts
is based on the notions of use and observation, and strictly
mimics the way in which humans use their artifacts. As a
simple example, a coffee machine is an artifact whose usage
interface provides controls to make coffee and select the sugar
level, and whose state and behaviour are observable by the
generation of events exposed through a display.

Artifacts can also be composed together by means of link
interfaces, which make it possible to create complex artifacts
as dynamic compositions of existing simpler artifacts.

Although a detailed description of A&A is outside the scope
of this paper (interested readers are referred to [12]), our
aim here is to identify some essential properties that make
it an interesting reference for a SOA programming model.
First, the agent abstraction explicitly enables and captures the
encapsulation of control, along with a notion of autonomy
as depicted by SOA requirements. Moreover, the interaction
model adopted for agents and artifacts interaction is strongly
uncoupled and data-oriented (vs. control oriented), thus pro-
viding for uncoupled and data-driven interaction: in fact, there
are no flows of control from an agent to an artifact or other
agents, as it happens instead in the case of Remote Procedure
Calls (RPC) or classical object-oriented method invocation.
Finally, concurrency can be naturally modelled both in the
form of concurrent activities carried on by an individual agent,
and as separate works carried on independently by distinct
agents (seamless concurrency support).

C. A SOA/WS Programming Model Based on A&A
In this section we introduce a basic programming model

for SOA based on A&A abstractions, referenced in the fol-

lowing as SA&A. Both services and service-user applications
in SA&A are uniformly modelled as a workspace where
an ensemble of agents work together, interacting both via
direct communication and by producing, consuming, sharing
and cooperatively using a dynamic set of artifacts. Agents
encapsulate the responsibility of the execution and control
of the business activities that characterise the SOA specific
scenario, while artifacts encapsulate the business resources and
tools needed by agents to operate in the application domain.
Figure 4 represents an abstract picture of a (web) service
designed upon the SA&A programming model: agents act
as service providers processing incoming service messages,
but some of them also act as clients of other services, as an
example of service composition.

Two kinds of artifacts are used in almost any service-
oriented application: ws-service-panel and ws-service-
interface. Both are used as interfaces or media enabling the
communication with the service clients or with external Web
services, based on open standards. In particular, the former
is used by agents implementing the business logic to retrieve
and be aware of the requests and messages sent to the (web)
service: so, for each service, one instance of such an artifact
encapsulates the functionalities related to a specific WSDL
and WS-Policy service description. In the simplest model, the
usage interface of this artifact provides just controls to manage
messages and requests—for instance, a control to retrieve the
messages to be processed, another to send response messages,
one further to check the number of pending messages, etc. In
more complex models, however, this artifact could encapsulate
the management of some quality-of-service aspects (such as
security, reliability, etc.), as defined by WS-* specification.
The latter one, instead, is used by agents to interact with an
existing service. So, an instance of the ws-service-interface
is usually first instantiated referring to a specific WSDL and
possibly WS-Policy description, and then used (by one or
more agents) to interact with a specific Web Service. In the
simpler case, its usage interface should provide controls just
to invoke services and observe possible response messages.
However, other functionalities could be encapsulated here for
the management of QoS aspects (described in the WS-Policy



Fig. 4. An abstract representation of a (web) service architecture according to the SA&A programming model, composed by agents and artifacts building
blocks. Artifact usage interface is represented as a panel with some controls inside. Some of them are labelled with a name which is equal to the operation
that the control is meant to trigger. The ws-service-panel and ws-service-interface artifacts in the figure are used respectively to collect request messages
and to interact with existing (web) services.

specification).
In the abstract representation in Figure 4, other kinds of

general purpose artifacts are represented, such as a shared
knowledge base, a blackboard, a spreadsheet. Specific kind
of artifacts could be instantiated dynamically, or disposed
of, according to the evolution of the service provision. Two
remarks are worth before closing this section. First, the picture
refers to the service side of a SOA: the client-side would be
similar, yet with no the need for ws-service-panel artifacts1

Moreover, only the basic aspects of a service have been
presented, since our aim is to give the reader the “taste” of the
shift from state-of-the-art, component-based to agent-oriented
approaches, rather than developing a full-fledged application
scenario.

IV. PROGRAMMING AGENTS AND ARTIFACTS IN simpA

simpA is an open-source extension2 of the Java platform
aimed at assuming the A&A abstractions as the basic high-level
building blocks to program concurrent applications [15]. This
approach contrasts with most of the current approaches, which
often model concurrency aspects by “adapting” object-oriented
abstractions (classes, objects, methods)—e.g. [3]. Rather, we
introduce the new A&A abstractions, and exploit real object-
orientation to model any basic low-level data structure used
to program agents and artifacts, as well as any information
exchanged through interaction. This approach leaves concur-
rency and high-level organisation aspects orthogonal to the

1Of course, agents would encapsulate the business activities of the client
side of the application.

2The simpA technology is available for download at the simpA web site,
http://www.alice.unibo.it/simpa

object-oriented abstraction layer, leading, in principle, to a
more coherent programming framework.

Currently, the simpA extension is realised as a library,
exploiting Java annotations to define the new programming
constructs: consequently, a simpA program can be compiled
and executed using the standard Java compiler and virtual
machine, with no need for specific extensions of the Java
framework (preprocessors, compilers, class loaders, or JVM
patches). Hence, the newest constructs take the form of
annotated classes and methods—which, however, are clearly
separated from their non-annotated, underlying object-oriented
versions used at the implementation level. The choice of using
the library & annotations solution to implement a language and
a platform extension has the advantage to maximise the reuse
of a widely adopted platform like Java: at the same time, it
has some relevant drawbacks, due to the lack of agents and
artifacts as first-class abstractions both in the language and in
the virtual machine. Accordingly, part of our ongoing work
is devoted to the definition and the prototype implementation
of a new full-fledged language and platform called simpAL,
rooted on agents and artifacts as real first-class entities.

In the remainder of the section we first describe how to
define the structure of an agent (Subsection IV-A) and of an
artifact (Subsection IV-B), then present the API supporting
the agent-artifact interaction (Subsection IV-C) and the overall
shape of a simpA application (Subsection IV-D).

A. Defining Agents

Since one of our main objectives was to minimise the
number of classes to be defined by users for introducing new
agents and artifacts, we adopted a very simple, one-to-one
mapping—just one class per agent or artifact template—so as



to make things as agile as possible. Accordingly, a new agent
template3 is defined by extending the alice.simpa.Agent
base class provided in the simpA API: the class name is equal
to the agent template’s name. At runtime, new instances of this
agent type can then be spawn when needed. The execution of
an agent consists in executing the activities specified in its
template, starting from the main one.

In the following, we stress the four key aspects of agent tem-
plates’ definition: the memo-space as a way to provide long-
term memory (Subsection IV-A.1), the definition of atomic vs.
structured activities (Subsection IV-A.2), the coordination of
such (sub-)activities (Subsection IV-A.3), and the definition of
cyclic behaviours (Subsection IV-A.4).

1) Agents’ long-term memory: the memo space: Agent
long-term memory is realised as an associative store called
memo-space, where the agent can dynamically attach, associa-
tively read and retrieve chunks of information called memos. A
memo is a tuple, characterised by a label and an ordered set of
arguments, possibly bound to data objects. If some arguments
are left unbound, the memo is partially specified. A memo-
space is just a dynamic set of memos: each memo is identified
by its label and argument list.

Each agent is provided of internal actions—available in
the implementation as protected methods—to atomically
and associatively access and manipulate the memo space.
In particular, memo(Label,Arg0,Arg1,...) is used to
create a new memo with a specific label and arguments: these
can be null or bound to specific data objects. Conversely,
readMemo(Label,Arg0,Arg1,...):Memo and
removeMemo(Label,Arg0,Arg1, ...):Memo
respectively read and remove a memo that matches both the
label and the given arguments: these can be either concrete
values or variables—in the latter case, represented as instances
of the MemoVar class. In the special but frequent case that,
due to the designer’s own choice and convention, the label
alone is enough to uniquely identify the memo type—that is,
the same label in not used twice with a different argument
list to denote different memo types—and that a single tuple
of a given type is present in the memo space at a time, two
linguistic shortcuts are provided: getMemo(Label):Memo
and delMemo(Label):Memo respectively get and remove
a memo with a given label, chosen non-deterministically
among the existing ones.

By default, the boot args(Arg0,Arg1,...) memo
is available in each agent’s memo space at the agent’s boot
time, and contains the parameters optionally specified when
the agent has been instantiated.

It is worth remarking that the memo-space is the only
data structure adopted for supporting the agent’s long-term
memory: the instance fields of agent classes are not used.

2) Atomic and structured activities: Agent activities can
be either atomic—i.e. not composed of sub-activities—or
structured, composed by some kinds of sub-activities. Atomic
activities are implemented as methods with the @ACTIVITY

3The term “template” is used here as a higher-level synonym of “class”,
intended as the entity describing the structure and behaviour of all the template
instances.

activityA

activityB

activityC
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main

Fig. 5. A representation of an agent’s main structured activity composed
of two parallel sub-activities activityB and activityC to be executed after
activityA; activityD is executed after the completion of both activityB and
activityC.

annotation, with no input parameters and with void return
type. The body of a the method specifies the computational
behaviour of the agent corresponding to the accomplishment
of the activity. Method local variables are used to encode data-
structures representing the short-term memory related to the
specific activity. By default, the main activity of an agent is
called main, and must be defined by every agent template.
Here is a naı̈ve example of agent template:

public class MyAgent extends Agent {
@ACTIVITY void main(){
log("Hello, world!");

}
}

In this case, the agent behaviour simply logs the “Hello,
world” message onto standard output and then terminates.

Structured activities are (hierarchically) composed of sub-
activities. The notion of agenda is introduced to specify
the set of the potential sub-activities composing the activity,
referenced as todo in the agenda. Each todo specifies the
name of the sub-activity to be executed, and optionally a pre-
condition. When a structured activity is executed, all the todos
in the agenda are executed as soon as their pre-conditions hold:
no pre-condition means that the todo can be executed immedi-
ately. So, multiple sub-activities can be executed concurrently
in the context of the same (super) activity.

A structured activity is implemented by a method anno-
tated with an @ACTIVITY WITH AGENDA annotation, which
contains the todo descriptions as a list of @TODO annota-
tions. Each @TODO specifies the name of the sub-activity to
be executed, as well as a pre property for the optionally
precondition, expressed as a boolean expression of Prolog
predicates, possibly combined through the classical and, or
and not connectors (represented by the ,, ;, and ! symbols,
respectively). Predicates can be predefined or user-defined—
actually, any valid Prolog expression (clause body) can be
specified. Essentially, these predicates make it possible to
specify conditions on the current state of the activity agenda, in
particular on (i) the state of the sub-activities (todos)—whether
they have completed / aborted / started, and on (ii) the memos
that could have been attached to the agenda. Preconditions
can depend only on the local (inner) agent’s state, not on the
agent-environment state.

Now let us see a simple example of an agent with a
structured activity, whose agenda is composed by four todos:
activityA, activityB, activityC, and activityD



(see Figure 5). activityA is meant to be executed as soon
as the main activity starts, activityB and activityC
are executed in parallel when activityA completes, while
activityD starts when both activityB and activityC
have been completed.
public class MyAgent extends Agent {

@ACTIVITY_WITH_AGENDA({
@TODO("activityA"),
@TODO("activityB", pre="completed(activityA)"),
@TODO("activityC", pre="completed(activityA)"),
@TODO("activityD",

pre="completed(activityB),completed(activityC)")
}) void main(){}

@ACTIVITY void activityA(){
memo("x",1); // attach a new memo x(1)

}

@ACTIVITY void activityB(){
int v = getMemo("x").intValue(0); // retrieve 1st arg
memo("y", v+1, v-1); // attach a new memo y(2,0)

}

@ACTIVITY void activityC(){
memo("z", getMemo("x").intValue(0)*5); // attach z(5)

}

@ACTIVITY void activityD(){
MemoVar y0 = new MemoVar();
MemoVar y1 = new MemoVar();
readMemo("y",y0,y1); // read memo arguments
int z = getMemo("z").intValue(0); // z = 5
int w = z*(y0.intValue() + y1.intValue()); // w = 10
log("the result is: "+w); // should log 10

}
}

In this example, the agent attaches and retrieves some memos
in the memo-space to share data among its (sub-)activities
and store the result of its work. In particular, in activityA
the agent stores a memo x(1), then in activityB and
activityC reads the memo labelled with x and uses its con-
tent to create the two new memos y(2,0) and z(5); finally,
in activityD, it reads both memos y and z and uses them to
compute the desired result. The Memo class provides methods
for accessing the memo content: for instance, intValue(i)
retrieves the i-th argument as an integer value.

It is worth noting that local method variables are exploited
as a kind of short-term memory, in contrast with the memo-
space exploited as a long-term memory.

3) Coordinating sub-activities: Memos can be used both to
contain data objects elaborated by activities, and to support the
coordination of sub-activities. This is possible by exploiting
the memo predicate in the specification of the pre-conditions so
as to test the presence of a specific memo in the memo space—
and possibly to associatively retrieve its argument values, if
needed. Below is a variant of the previous example, where the
pre-conditions for the execution of sub-activities are no longer
expressed as conditions on the completion of other activities,
but are based on the availability of the information that each
sub-activity needs in order to be executed:
public class MyAgent extends Agent {
@ACTIVITY_WITH_AGENDA({
@TODO("activityA"),
@TODO("activityB", pre="memo(x(_))"),
@TODO("activityC", pre="memo(x(_))"),
@TODO("activityD", pre="memo(y(_)),memo(z(_))")

}) void main(){}
...

}

Accordingly, activityB is triggered as soon as a memo
matching the template x( )4 is found in the memo space,
and the same for the other activities.

4) Cyclic behaviour: In order to define a cyclic behaviour,
a todo can be specified to be persistent: then, once it has
been completely executed, it is automatically re-inserted in the
agenda, so that it is eventually executed again. In the following
example, the agent’s main activity consists of repeatedly
acquiring a new task to do and serving it concurrently with
the other running tasks.
public class MyAgent extends Agent {

@ACTIVITY_WITH_AGENDA({
@TODO("getNewTaskTodo", persistent=true),
@TODO("doTask", pre="memo(new_task_todo)",

persistent=true)
}) void main(){}

@ACTIVITY void getNewTaskTodo(){
// <wait for a task todo>
memo("new_task_todo");

}

@ACTIVITY void doTask(){
removeMemo("new_task_todo");
// <do task>

}
}

B. Defining Artifacts

Analogously to agents, artifacts are mapped onto a single
class, too. An artifact template is described by a single class
extending the alice.simpa.Artifact base class. Again,
the elements defining an artifact—its inner and observable
state and the operations defining its computational behaviour—
are mapped onto suitably annotated class elements. The in-
stance fields of the class are used to encode the inner state
of the artifacts, while suitably annotated methods are used to
implement artifacts operations.

In particular, for each operation (control) listed in the
usage interface, a method with no return parameter and anno-
tated with the @OPERATION annotation must be defined: the
method name and arguments must coincide with the name and
arguments of the operation to be triggered. Any method an-
notated with @OPERATION represents the first computational
step executed when the homonymous operation is triggered.
Moreover, since any useful artifact has to be somehow observ-
able, the signal primitive is used to generate events that can
be observed by the agent using the artifact.

As a simple example, the following code shows the defi-
nition of a Count artifact functioning as a simple counter,
whose usage interface defines just one operation (inc) for
incrementing the counter value:
public class Count extends Artifact {
int count;

public Count(){ count = 0; }

@OPERATION void inc(){
count++;
signal("new_count_value", count);

}
}

4Following the Prolog syntax, the underscore means any value. Analo-
gously, symbols starting with an uppercase letter represent variables.



An observable event is characterised by a label describing
the kind of the event and possibly an object representing
the event data. In the previous example, for instance, a
new count value event is generated each time the counter
is updated.

Some events are automatically generated for any operation
execution: in particular, op execution completed and
op execution failed are generated when an operation
completes with a successful or a failure result, respectively.

Besides observable events, an artifact can define a number
of observable properties—that is, labelled inner state variables
whose change is made observable to agents which are fo-
cussing the artifact (this aspect is discussed more in detail
in Subsection ??). Observable properties are expressed as in-
stance fields annotated with the @OBSPROPERTY annotation:
a basic set of primitives is available to manipulate the property
values. As an example, let us consider a variant of the Count
artifact, which defines the count observable property:
public class Count extends Artifact {
OBSPROPERTY int count;

public Count(){ count = 0; }

@OPERATION void inc(){
updateProperty("count",count++);

}
}

Now, each time the operation inc is executed, the prop-
erty value is updated by the updateProperty primitive,
which causes the generation of an observable event of type
property updated(count): the event data carry the new
property value.

In the following, we stress more in detail three key aspects
of artifact definition: the definition of structured operations
(Subsection IV-B.1), temporal guards (Subsection IV-B.2),
and linkability (Subsection IV-B.3); other artifact features are
reported in Subsections IV-B.3, IV-B.4 and IV-B.5.

1) Structured operations: In previous examples, artifact op-
erations were always atomic—i.e., made of a single step. How-
ever, structured operations, composed of multiple (atomic)
steps, can also be implemented: to this end, each operation
step has to be encoded by a method annotated with @OPSTEP
annotation, which is triggered by the nextStep primitive.
This primitive specifies the name of the step to be triggered
along with its parameters, as a kind of continuation.

In addition, each operation or operation step can be provided
with a guard, that is, a condition that must hold for actually
executing the triggered operation or operation step. Guards are
implemented as boolean methods annotated with the @GUARD
annotation, whose arguments must exactly match those of the
guarded operation or operation step: as soon as the guard
is evaluated to true, the step is executed. For the sake of
concreteness, let us consider the following example:
public class MyArtifact extends Artifact {
int m;

@OPERATION void op1(){
m = 1;
nextStep("opStepB");

}

@OPSTEP(guard="canExecOpStepB") void opStepB(){

log("op1 completed.");
}

@GUARD boolean canExecOpStepB(){ return m == 5; }

@OPERATION void op2(){ m++; }
}

Here the operation op2 is atomic, while the operation op1 is
composed of two steps: the first coincides with the operation
itself5 (and initialises m to 1), while the second, opStepB, is
explicitly labelled and encoded by the homonymous method
(which writes a message to the log). Of course, the definition
order of these methods is not significant—the above writing
order is just a matter of readability.

The opStepB step is triggered by the first step in op1
through the explicit invocation of the nextStep primitive:
once triggered, the step is executed only when (and as soon
as) its guard, canExecOpStepB, evaluates to true. This
guard conditions the step execution to the value of the internal
artifact variable m, which must be equal to 5 for opStepB to
be actually executed. In turn, m is incremented by the operation
op2: so, opStepB is executed only after agents have invoked
op2 four times, raising m to 5. This completes the execution
of operation op1.

As anticipated above, a guard can also be applied to an
operation, with the obvious meaning that the guard must be
true for (the first step of) the operation to be executed:
public class MyArtifact extends Artifact {
int m;
public MyArtifact(){ m=1; }
@OPERATION(guard = "canExecOp1") void op1(){ m++; }
@GUARD boolean canExecOp1(){ return m < 10; }
}

It is worth noting that multiple instances of the same operation
can be triggered for execution, typically by distinct agents: in
that case, a strict ordering semantics applies on their execution,
based on to the time when the operation has been triggered
(besides the evaluation of the guard).

Summing up, structured operations make the implementa-
tion of long-term operations encapsulated, flexible and effec-
tive, allowing for multiple structured operations to be executed
concurrently by interleaving the guarded execution of their
steps, while enforcing the mutual exclusion on the access to
the artifact state. For further details, we forward the interested
reader to the simpA manual available at [1].

2) Temporal guards: Besides guards based on the arti-
fact state, simple temporal guards are also supported: their
evaluation becomes true after a given time is elapsed since
they have been triggered. To define a temporal guard, a
tguard property must be specified inside the @OPSTEP
annotation instead of guard: the property should then be
assigned a (long) positive value, indicating the guard duration
in milliseconds. Let us consider the following example:
public class Clock extends Artifact {
OBSPROPERTY int nticks;
boolean stopped;

public Clock(){ nticks = 0; stopped = false; }

5This choice makes it easier to express single-step operations, which are
the most frequent case.



@OPERATION void start(){
stopped = false;
nextStep("tick");

}

@OPSTEP(tguard=1000) void tick(){
if (!stopped){
updateProperty("nticks",nticks+1);
nextStep("tick");

}
}

@OPERATION void stop(){ stopped = true; }
}

Once started via the start interface command, this artifact
generates a tick event approximatively every second, which
increments the clock value. When some agent issues the stop
command, the counting finally terminates.

3) Linkability: Besides the usage interface, artifacts can be
provided with a link interface, that is, a set of operations to be
invoked (linked) by other artifacts (not by agents). This feature
makes it possible to create complex artifacts by dynamically
composing simpler artifacts, mimicking the way in which
human artifacts are linked together. From the concurrency
model viewpoint, linked operations have the same behaviour of
operations triggered by the usage interface: the only difference
is that the observable events generated by a linked operation
are made observable not to the artifact linking the operation
(which would not make sense in the simpA model), but to the
agent originating the execution chain.

4) Observable states: The observable behaviour of an arti-
fact can be partitioned in states, each equipped with a different
usage interface and observable property set.

5) Artifact manual: Finally, each artifact should be
equipped with a document containing a formal machine-
readable, semantic-based description of the artifact function-
ality and usage instructions (usually called operating instruc-
tions). Such a description is meant to provide a semantic
layer making it possible to envision, in principle, scenarios
where agents could be able to select and use artifacts that are
added dynamically to their working environment, without a
pre-programmed knowledge about their functionality and use.
Again, the interested reader is forwarded to the simpA web
site for up-to-date documentation on the work in progress.

C. Agent API for Interacting with Artifacts

The API for enabling agents to interact with artifacts con-
cerns two main categories: use and observation (Subsection IV-
C.1) on the one side, instantiation and discovery (Subsec-
tion IV-C.2), on the other.

1) Artifact use and observation: Artifact use is the basic
form of interaction between agents and artifacts. In fact, also
artifact instantiation and artifact discovery are realised by us-
ing proper artifacts—a factory and a registry artifacts—which
are supposed to be available in any working environment.

Following the A&A model, the use of an artifact by an
agent involves two basic aspects: (i) executing operations on
the artifact, and (ii) perceiving the observable events possibly
generated by the artifact through agent sensors.

Agents execute operations on artifacts by exploiting the
interface controls (or commands) provided by the artifact
usage interface. The use basic action is provided for this
purpose, and specifies the identifier of the target artifact,
the operation to be triggered and optionally the identifier of
the sensor used to collect observable events generated by
the artifact. When the action execution succeeds, the value
returned by use is the operation’s unique identifier. If, instead,
the action execution fails—for instance, because the interface
control specified is not part of artifact usage interface—an
exception is raised.

Sensors are represented by specific classes, which extend
the basic abstract class alice.simpa.AbstractSensor.
A concrete default implementation is provided, called
alice.simpa.DefaultSensor. Default sensors provide
a simple FIFO policy in managing observable events collected
from the environment. Sensors are dynamically created as nor-
mal objects—specifying a logic name—and are then dynami-
cally linked to / unlinked from agents’ bodies. An agent can
link / unlink any number of sensors, possibly of different kind,
according to its own strategy for sensing and observing the
environment, by means of specific primitives (linkSensor,
unlinkSensor, and linkDefaultSensor).

The sense primitive makes it possible to retrieve the events
collected by a sensor: it waits until a matching event appears
— that is, until an event collected by a given sensor matches
an optional pattern (for data-driven sensing) — or until an
optional timeout is reached. Pattern matching is based on
regular-expression patterns, matched over the event type (a
string). In the case of a successful execution, the event is re-
moved from the sensor and a perception related to that event—
represented by an object instance of the class Perception—
is returned. If, instead, no perception is sensed for specified
time, a NoPerceptionAvailableException is raised.
The following code shows the CountUser agent creating
and using a Count artifact, then locating and using the
myArchive artifact (instantiation and discovery will be de-
scribed later).
public class CountUser extends Agent {
@ACTIVITY void main() {

SensorId sid = linkDefaultSensor();
ArtifactId countId = makeArtifact("myCount","Count");

use(countId,new Op("inc"));
use(countId,new Op("inc"),sid);

try {
Perception p = sense(sid,"count_value",1000);
long value = (Long) p.getContent();

ArtifactId dbaseId = lookupArtifact("myArchive");
use(dbaseId, new Op("write",new DBRecord(value));

} catch (NoPerceptionException ex){
log("No count_value perception from the count");

}
}

}

The agent activity accounts for: (i) creating a Count artifact
as described in previous section; (ii) using the artifact, ex-
ecuting twice the inc operation provided by Count usage
interface and observing the count event generated by the
artifact (carrying the count value) only the second time that



the operation is executed; (iii) locating and using a DBase
artifact called myArchive, performing the write operation
to record the value perceived by myCount.

The class ArtifactId is exploited to represent arti-
facts’ unique identifiers. The first time that an agent executes
inc, it is not interested in observing the events generated
by the operation execution, so no sensor is specified. The
sense primitive is used to perceive only the events matching
count value, and with a timeout of one second. The
Perception class provides a getContent method to get
the content of the perception (event).

It is worth remarking here the similarities but also the deep
differences between the notion of sensor, on the one side, and
the future construct / pattern used in concurrent programming
for handling asynchronous calls, on the other. In fact, a sensor
can be used to collect possibly-multiple observable events
generated as a consequence of possibly-multiple use actions,
on possibly-distinct artifacts. Futures, instead, are typically
used to get asynchronously the single result of the execution
of a single call.

Finally, a support for continuous observation is provided.
If an agent is interested in observing every event generated
by an artifacts—including those generated as a result of the
interaction with other agents—two primitives can be used:
focus and unfocus. The former starts observing the ar-
tifact, and therefore specifies the sensor to be used to collect
the events and optionally the reg-ex filter defining the events to
be observed; the latter obviously stops the observation process.

2) Artifact instantiation and discovery: In the above
example two further actions, makeArtifact and
lookupArtifact, are used to instantiate and lookup
artifacts. As briefly mentioned in the previous Subsection,
both these auxiliary actions are realised on top of a bunch
of use and sense actions executed on two pre-defined
artifacts available in each simpA application—the factory
and the registry artifacts, respectively.

In particular, instantiation is actually handled by the fac-
tory’s makeArtifact operation, which takes the logical
name of the new artifact, its template (full class name
or Class type) and possibly the parameters needed for
its creation (which coincide with the constructor parame-
ters of the artifact template class). In case of success, a
make succeeded event is generated, and the artifact identi-
fier is provided as the event content. The factory also provides
an analogous operation, makeAgent, to instantiate & spawn
agents.

In quite the same way, artifact discovery is handled by the
registry’s lookupArtifact operation, whose argument is
the name of the artifact to be located: upon success, the artifact
identifier is returned as the content of a lookup succeeded
event.

D. A simpA Application

The core of a simpA application is a simple main class
where a simpA working environment is created and an initial
sets of agents are booted, possibly with a starting set of
artifacts.

In the following example, the my-app workspace is cre-
ated, initially composed of an instance of the DBase artifact
(not reported) and a CountUser agent (which in turn will
create a Count artifact):
public class MyApp {
public static void main(String[] arg) throws Exception{
ISimpaWorkspace env = Simpa.createWorkspace("my-app");
env.createArtifact("myArchive","DBase");
env.spawnAgent("a-user","CountUser");

}
}

Any non-naı̈ve application, however, can be expected to de-
mand the creation of multiple agents working concurrently in
a workspace populated by multiple artifacts of different kinds.

V. PROGRAMMING SOA/WS APPLICATIONS ON TOP OF
simpA: THE simpA-WS FRAMEWORK

simpA-WS is a framework on top of simpA which makes
it possible to build Web Service applications as simpA
workspaces with agents and artifacts, following the model
described in Subsection III-C. Besides simpA, simpA-WS
exploits Apache AXIS2 open-source technology6 as an en-
abling low-level Java-based web service technology effective
for managing (SOAP) message exchange, for an effective
management of XML data, etc. simpA-WS is a fully Java-
based open-source technology, and can be downloaded at the
simpA-WS web site7.

A. simpA-WS Programming Interface

The simpA-WS framework provides a uniform model to
conceive both Web services and applications interacting with
Web Services as simpA workspaces with agents and artifacts
encapsulating the business logic: such pre-defined artifacts
can be exploited as part of the service-oriented infrastructure.
There are two basic kinds of artifacts:

• ServiceInterface—an implementation of the ws-
service-interface artifact, meant to be instantiated and
used by agents to interact with a specific Web Ser-
vice, to send messages for executing operations and
to get the replies sent back by the service. Multiple
ServiceInterface artifacts can be instantiated and
used in a given workspace to interact with multiple Web
services.

• ServicePanel—an implementation of the ws-
service-panel artifact, meant to be used by agents in a
service application to manage the incoming requests and
messages from the Web Service. One ServicePanel
must be created and used for each (web) service to
implement. Multiple ServicePanel artifacts can
be instantiated and used in the same workspace to
implement multiple services within the same simpA-WS
application.

So, in simpA-WS the interaction with and among Web service
applications is totally conceived in terms of message ex-
changes; operations represent, from this point of view, the con-
text in which message exchange protocols or MEPs take place,

6Apache AXIS2 web site is available at: http://ws.apache.org/axis2/
7http://www.alice.unibo.it/simpa-ws



as described in the service documents (WSDL, choreography,
etc.). Even if this is quite obvious by considering the reference
SOA/WS model, most of the existing platforms supporting
SOA/WS hides the message level to the programmer, provid-
ing API where the execution of an operation typically accounts
for invoking a method in stub objects or components providing
an interface that mirrors the service interface. Conversely,
in simpA-WS interacting with a service accounts (from an
agent viewpoint) for using a ServiceInterface artifact
to send messages to the service according to the protocol
characterising by the operation to be executed.

The message level is adopted here also at the service side,
while in non-agent oriented platforms the message processing
is typically not realised by the components that encapsulate
the service’s business logic. Conversely, in simpA-WS the
message level is brought to the business logic, so that one or
multiple agents—encapsulating the business logic activities—
exploit a ServicePanel artifact to retrieve and process
messages, possibly sending one or multiple replies during their
activities (which can be long-term).

Summing up, a Web service application in simpA-WS (both
on the service and on the user’s side) is programmed as a
workspace where one or multiple agents create and use one
or multiple ServiceInterface artifacts to interact, even
concurrently, with services; at the same time, they share and
use other kinds of artifacts that represent useful resources and
tools needed to support their (cooperative) activities. On the
service side, one or multiple ServicePanel artifacts—the
latter case concerns multiple services implemented in the same
Web service application—are created and used by agents to
process the requests, possibly in parallel.

In the following we describe the ServiceInterface
and ServicePanel artifacts more in detail, and provide a
simple running example.

B. Interacting with existing Web Services

ServiceInterface defines a simple usage interface
for executing operations on a Web Service, providing a di-
rect support for exchanging messages realising any possible
MEP, from simple ones with at-most one message input and
one message output to more articulated ones—as defined
by WSDL 2.0—possibly including multiple input and output
messages in the context of the same operation.

A ServiceInterface artifact must be instantiated by
specifying—as artifact configuration parameters—the URI of
the WSDL containing the service description, the name of
the specific service and port type (interface) “pointed” by
the artifact, and a local endpoint name, which represents the
endpoint to which the artifact is bound to receive messages
(such as replies). Thus, the artifact usage interface provides
two basic operations:

• sendMsg, to send a message to the service, in the
context of an operation. Abstract description:
sendMsg(opName:String, {,msgName:String,}

msgContent:OMElement {,relatedToMsgID:String})

where msgName identifies the message to be sent (ac-
cording to the WSDL), opName is the name of the opera-
tion, msgContent is the content of the message (a XML

piece of data, according to the XML schema described
in the WSDL), and optionally relatedToMsgID is
the identifier of the message to which this message is
related to. msgName is optional: if it is not specified,
its value is determined by accessing the WSDL. The
execution of the message generates an observable event
msg sent(msgID:String) if it succeeded, contain-
ing the identifier of the message sent, or an event
msg send failed if it fails.

• getReply, to get the reply to a message previously sent
during an operation. Abstract description:
getReply(msgID:String})

where msgID is the identifier of the message to
which the reply message must be related. When an
output message related to msgID is received by the
artifact, the operation generates an observable event
msg reply(msg:MsgInfo).

Besides these two basic operations, other auxiliary operations
are provided to directly support basic MEPs; for instance:

• requestOp, which implements the basic request-
response (in-out) MEP by sending a request message and
generating an event with the response message as soon
as it arrives. Abstract signature:
requestOp(opName:String, msgContent:OMElement)

where opName is the name of the operation and
msgContent is the content of the message (a XML
piece of data, according to the XML schema described in
the WSDL). It’s worth noting that in this case the message
name is automatically retrieved from the description
of the operation in the WSDL. The main observable
events generated by the operation are the following:
request sent(msgID:String) if the request mes-
sage is sent successfully (request failed otherwise),
and msg reply(msg:MsgInfo) as soon as the reply
is received.

C. Processing requests and messages for a Web Service

A ServicePanel artifact is used to manage and con-
trol the messages which arrive to a service, providing basic
functionalities to retrieve them and to send the related replies.
A ServicePanel artifact is instantiated by specifying—
as artifact configuration parameter—the URI of the WSDL
containing the description of the service. The artifact usage
interface provides two basic operations:

• getNextRequestMsg, used to retrieve incoming mes-
sages representing new operation requests to be served.
Abstract signature:
getNextRequestMsg(filter:MsgFilter)

where filter can be specified to select the request mes-
sages to which the agent is interested to (for instance, re-
lated to a specific operation). The operation generates an
observable event new op request(msg:MsgInfo)
as soon as an message matching the filter is received
by the artifact, containing information about the message
arrived.



Fig. 6. An abstract representation of the stock quote user and service applications, with in evidence the agents and artifacts involved.

• getMsgRelatedTo, used to retrieve incoming mes-
sages related to previously sent messages. Abstract sig-
nature:
getMsgRelatedTo(msgID:String)

where msgID is the identifier of the message to which
the reply is related. The operation generates an observable
event new msg(msg:MsgInfo) as soon as an message
matching the filter is received by the artifact, containing
information about the message arrived.

• sendReply, used to send message replies. Abstract
signature:
sendReply(toMsg:MsgInfo,

msgContent:OMElement)

where toMsg contains the information about the message
to which the reply is related and msgContent is the
content of the reply message (a XML piece of data,
according to the XML schema described in the WSDL).

D. A simple example: Stock Quote with Agents and Artifacts

To give a concrete taste of simpA-WS, in the following
we report the sketch of the implementation of a stock quote
service, which is typically found among the basic examples of
Web Service technologies: here we consider a slightly more
articulated version, with a support not only for in-only and
in-out (request-response) MEPs, but also out-only.

1) Stock Quote Service: The stock quote service is char-
acterised by three basic operations (a sketch of the WSDL
is reported in the appendix): GetLastTradePrice, an
in-out (request-response) operation useful to get the current
value of a stock given its name, Subscribe, an in-only
(fire-and-forget) operation to subscribe the service in order
to receive periodically the quote of a specified stock, and
NotifyTradePrice, an out-only operation executed by
the service to notify the value of a stock to a previously
subscribed user. Figure 6 shows the architecture of a possible
implementation of the service using simpA-WS: Table I,
Table II, Table III and Table IV show the implementation of
the service side, while Table V, Table VI and Table VII show
the implementation of a simple application interacting with
the service.

The service is composed by two types of agents: (i)
StockQuoteServiceAgent, responsible for creating the
service panel artifact and using it to process the incom-
ing GetLastTradePrice and Subscribe requests; (ii)
a StockQuoteNotifierAgent, responsible for periodi-
cally notifying its subscribers of the stock quotes. Besides
these agents, two kinds of artifacts are exploited (other than
ServicePanel): a StockQuoteDBase artifact, which
functions as a store containing the stock quote values, and
a SubscribersRegistry, which is used to keep track of
the list of the service subscribers.
StockQuoteServiceAgent uses ServicePanel

to process the requests as soon as they are collected: then,
in the case of GetLastTradePrice requests, the agent
accesses the database artifact to get the current value of the
stock quote, and sends a reply with such information; instead,
in the case of Subscribe requests, the agent registers
the new subscribers by executing the addSuscriber
operation on the SubscribersRegistry artifact.
StockQuoteNotifierAgent periodically retrieves
the subscribers’ list by executing a getSubscribers
operation on the SubscribersRegistry artifact: for
each subscriber it then sends a NotifyTradePrice
message with the updated value of the stock quote, retrieved
from the database artifact. Table I and Table II report a sketch
of the source code of the agents, Table III the skeleton of the
artifacts, and Table IV the main of the service application
(called StockQuoteService), which actually creates the
initial set of agents and artifacts composing the application
(apart the ServicePanel artifact, which is created by the
StockQuoteServiceAgent agent).

Despite its simplicity, this example should give a quite
concrete idea about how complex services—characterised, for
instance, by complex message-exchange protocols, possibly
including both pro-active and reactive parts, short and long-
running activities, etc.—can be structured in terms of agents
and artifacts.

2) Stock Quote User Application: Table V, Table VI
and Table VII show an example of a simpA-WS
user application exploiting Web services, in particu-
lar the stock quote service described by the WSDL
reported in the Appendix. The application is com-



public class StockQuoteServiceAgent
extends Agent {
@ACTIVITY_WITH_AGENDA( {
@TODO(activity="preparing"),
@TODO(activity = "processingMsg",

pre="completed(preparing)", persistent = true),
}) void main() {}

@ACTIVITY void preparing() throws ActivityFailure {
makeArtifact("StockQuoteService","alice.simpaws.ServiceInterface",

new ArtifactConfig("http://localhost:8080/axis2/wsdl/StockQuoteService.wsdl"));
}

@ACTIVITY void processingMsg() throws ActivityFailure {
ArtifactId panel = lookupArtifact("StockQuoteService");
SensorId sid = linkDefaultSensor();

use(panel, new Op("getNextOpRequest"), sid);
Perception p = sense(sid, "new_op_request", 300000);
MsgInfo msg = (MsgInfo) p.getContent(0);
String name = msg.getOperationName();

if (name.equals("GetLastTradePrice")) {
OMElement replyMsg = getStockValue(msg.getMsgContent());
use(panel, new Op("sendReply", msg, replyMsg));

} else if (name.equals("Subscribe")) {
String stockName = getStockName(msg.getMsgContent());
ArtifactId reg = lookupArtifact("subscribers-registry");
use(reg,new Op("addSubscriber",msg,stockName));

}
unlinkSensor(sid);

}

private OMElement getStockValue(OMElement msg) {...}
private String getStockName(OMElement elem){...}

}

TABLE I
STOCK QUOTE AGENT ON THE SERVICE SIDE

public class StockQuoteNotifier
extends Agent {

@ACTIVITY_WITH_AGENDA({
@TODO(activity = "notifyingStockQuotes", persistent = true),

}) void main() {}

@ACTIVITY void notifyingStockQuotes() throws ActivityFailure {
ArtifactId reg = lookupArtifact("subscribers-registry");
SensorId sid = linkDefaultSensor();

use(reg, new Op("getSubscribersList"), sid);
Perception p = sense(sid, "subcribers_list");

List<SubscriberInfo> list = (List<SubscriberInfo>) p.getContent();
if (list.size()>0){

ArtifactId panel = lookupArtifact("StockQuoteService");
for (SubscriberInfo sinfo: list){

OMElement replyMsg = getStockValue(sinfo.getStock());
use(panel, new Op("sendReply", sinfo.getMsgSource(), replyMsg));

}
}
unlinkSensor(sid);
suspendActivityFor(2000);
}

private OMElement getStockValue(String stock) {...}
}

TABLE II
NOTIFIER AGENT ON THE SERVICE-SIDE



public class SubscriberInfo {
MsgContext msg;
String quote;

public SubscriberInfo(MsgContext msg, String quote){
this.msg = msg;
this.quote = quote;

}
public MsgContext getMsgSource(){ return msg; }
public String getStock(){ return quote; }

}

public class SubscriberRegistry extends Artifact {
private ArrayList<SubscriberInfo> list;

public SubscriberRegistry(){
list = new ArrayList<SubscriberInfo>();

}

@OPERATION void addSubscriber(MsgContext ctx, String quote){
list.add(new SubscriberInfo(ctx,quote));

}

@OPERATION void getSubscribersList(){
signal("subcribers_list", list.clone());

}
}

public class StockQuoteDBase extends Artifact { ... }

TABLE III
ARTIFACTS USED ON THE SERVICE SIDE

public class StockQuoteService extends
WSApplication {
public void setup(){
try {

createArtifact("stock-quote-dbase",StockQuoteDBase.class);
createArtifact("subscribers-registry",SubscriberRegistry.class);
spawnAgent("stock-notifier-agent",StockQuoteNotifier.class);
spawnAgent("stock-quote-agent",StockQuoteServiceAgent.class);

} catch (Exception ex){
ex.printStackTrace();

}
}

}

TABLE IV
ENTRY POINT (MAIN) OF THE WEB SERVICE APPLICATION (SERVICE-SIDE)

public class StockQuoteUserAgent
extends WSAgent {

@ACTIVITY void main() throws ActivityFailure {
SensorId sid = linkDefaultSensor();
ArtifactId ServiceInterface =

makeServiceInterface("interface-1",
"http://localhost:8080/axis2/wsdl/StockQuoteService.wsdl",
"StockQuoteUserApplication");

use(ServiceInterface,new Op("requestOp", "getStockQuote", makeGetStockQuoteMsg("ACME")),sid);
Perception res = sense(sid, "msg_reply", 300000);
OMElement replyMsg = (OMElement) res.getContent();

log("Result: " + replyMsg.toString());
}

private OMElement makeGetStockQuoteMsg(String stockName) {...}
private void log(String st){...}

}

TABLE V
STOCK QUOTE USER AGENT ON THE CLIENT SIDE



public class StockQuoteMonitorAgent
extends WSAgent {

@ACTIVITY_WITH_AGENDA({
@TODO(activity="subscribing"),
@TODO(activity="collectingQuotes",

pre="completed(subscribing)", persistent=true)
}) void main(){}

@ACTIVITY void subscribing() throws ActivityFailure {
SensorId sid = linkDefaultSensor();
ArtifactId ServiceInterface =

makeServiceInterface("interface-2",
"http://localhost:8080/axis2/wsdl/StockQuoteService.wsdll",
"StockQuoteUserApplication");

OMElement subscribeMsg = makeRegisterMsg("ACME"));
use(ServiceInterface,new Op("sendMsg","Subscribe",subscribeMsg),sid);
Perception p = sense(sid, "msg_sent|msg_send_failed", 5000);
if (p.getLabel().equals("msg_sent")){

memo("subscribe_message_id",(String)p.getContent());
unlinkSensor(sid);

} else {
throw new ActivityFailure();

}
}

@ACTIVITY void collectingQuotes() throws ActivityFailure {
SensorId sid = linkDefaultSensor();
ArtifactId ServiceInterface = lookupArtifact("interface-2");
String msgId = (String)getMemo("subscribe_message_id").getArg(0);

use(ServiceInterface, new Op("getReply", msgId), sid);
Perception res = sense(sid, "msg_reply", 300000);
OMElement replyMsg = (OMElement) res.getContent();

log("New quote value: "+replyMsg.toString());
unlinkSensor(sid);

}

private OMElement makeRegisterMsg(String stockName) {...}
protected void log(String st){...}

}

TABLE VI
STOCK QUOTE MONITOR AGENT ON THE CLIENT-SIDE

public class StockQuoteUserApplication
extends WSApplication {
public void setup(){
try {

spawnAgent("stock-quote-user-agent",StockQuoteUserAgent.class);
spawnAgent("stock-quote-monitor-agent",StockQuoteMonitorAgent.class);

} catch (Exception ex){
ex.printStackTrace();

}
}

}

TABLE VII
ENTRY POINT (MAIN) OF THE WEB SERVICE APPLICATION (CLIENT-SIDE)

posed by two agents, StockQuoteUserAgent and
StockQuoteMonitorAgent. The former is characterised
by a simple main activity, which creates a proxy artifact
for interacting with the stock quote service—in particular,
to request the GetLastTradePrice operation (specifying
ACME as stock quote name), and get the reply, which is then
logged to the standard output. The latter has a slightly more
complex behaviour: first, it creates a service interface artifact
to interact with the stock quote service (alternatively, a single
service interface artifact could be shared and used by the two
agents), and subscribes (via the Subscribe operation) to
receive a periodic notification. The agent then starts its cyclic
collectingQuotes activity, receiving and logging all the

notifications sent back by the service. A sketch of the source
code of the agents is reported in Table V and Table VI,
while Table VII shows the main of the application (called
StockQuoteUserApplication), which simply spawns
an instance of both agents.

VI. CONCLUSIONS

In this paper we introduced an agent-oriented programming
model for developing SOA/WS applications, based on the
A&A meta-model, and simpA-WS, a framework built on top
of the Java platform for concretely programming service and
user applications in terms of agents and artifacts. This ap-
proach contrasts with the choices adopted by leading software



vendors in the state-of-the-art, which is typically based on a
component-oriented programming model. This paper extends
a previous work [14], with the description of the simpA-WS
framework.

Actually, as widely reported in literature [10], Service-
Oriented Computing and Web Services are considered among
the most promising and important application contexts for
agents and MAS. However, the focus of existing agent and
MAS research approaches is typically on exploiting AI-related
features and techniques for supporting the dynamic discovery
and flexible composition and orchestration of services. In this
paper, instead, we focussed on programming and software
engineering issues, highlighting the value of agent-oriented
abstractions as basic building blocks for designing and pro-
gramming services and applications using services.

Indeed the programming model introduced and the related
technologies—such as simpA-WS—are still in their infancy
and further work is needed along several directions. In the
paper we have just considered the very basic issues concerning
SOA and Web Services, without dealing with other important
advanced topics such as quality of service (security, reliabil-
ity, trust,...), service composition and coordination (orchestra-
tion, choreography, transactions), along with the related WS-
* specifications (WS-Security, WS-Trust, WS-Coordination,
etc). Future work will then be devoted to frame such issues in
the SA&A programming model, and to stress the approach
with real-world case studies and applications, besides the
simple toy examples included in the current distribution. In
particular, as a concrete case-study we will consider the sample
application provided in the WS-I web site8, trying to compare
our approach with those of the leading software vendors (IBM,
Microsoft, Sun, SAP—to mention some) available on such
site.
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APPENDIX

This appendix reports a sketch of the WSDL code of the stock
quote service discussed in the text.
<?xml version="1.0"?>
<definitions name="StockQuote"

targetNamespace="http://example.com/stockquote.wsdl"
xmlns:tns="http://example.com/stockquote.wsdl"
xmlns:xsd1="http://example.com/stockquote.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://example.com/stockquote.xsd"

xmlns="http://www.w3.org/2000/10/XMLSchema">
<element name="TradePriceRequest">

<complexType>
<all>

<element name="tickerSymbol" type="string"/>
</all>

</complexType>
</element>
<element name="TradePrice">

<complexType>
<all>
<element name="price" type="float"/>

</all>
</complexType>

</element>
...

</schema>
</types>

<message name="GetLastTradePriceInput">
<part name="body" element="xsd1:TradePriceRequest"/>

</message>
<message name="GetLastTradePriceOutput">
<part name="body" element="xsd1:TradePrice"/>

</message>
<message name="GetLastTradePriceOutput">
<part name="body" element="xsd1:TradePrice"/>

</message>
<message name="SubscribeMsg"> ... </message>
<message name="NotifyTradePriceMsg"> ... </message>

<portType name="StockQuotePortType">

<operation name="GetLastTradePrice">
<input message="tns:GetLastTradePriceInput"/>
<output message="tns:GetLastTradePriceOutput"/>

</operation>

<operation name="Subscribe">
<input name="Subscribe" message="tns:SubscribeMsg"/>

</operation>

<operation name="NotifyTradePrice">
<output name="NotifyTradePrice" message="tns:NotifyTradePriceMsg"/>

</operation>

</portType>

<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetLastTradePrice">
<soap:operation soapAction="http://example.com/GetLastTradePrice"/>
<input>

<soap:body use="literal"/>
</input>
<output>

<soap:body use="literal"/>
</output>

</operation>
...

</binding>

<service name="StockQuoteService">
<documentation>Stock quote service example </documentation>
<port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
<soap:address location="http://example.com/stockquote"/>

</port>
</service>

</definitions>


